D2a4: Sparse


F01BRF   LU factorization of real sparse matrix
F01BSF   LU factorization of real sparse matrix with known sparsity pattern
F04AXF   Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
F04QAF   Sparse linear least-squares problem, m real equations in n unknowns
F11BDF   Real sparse nonsymmetric linear systems, setup for F11BEF
F11BEF   Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
F11BFF   Real sparse nonsymmetric linear systems, diagnostic for F11BEF
F11BRF   Complex sparse non-Hermitian linear systems, setup for F11BSF
F11BSF   Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS,Bi-CGSTAB or TFQMR method
F11BTF   Complex sparse non-Hermitian linear systems, diagnostic for F11BSF
F11DAF   Real sparse nonsymmetric linear systems, incomplete LU factorization
F11DBF   Solution of linear system involving incomplete LU preconditioning matrix generated by F11DAF
F11DCF   Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by F11DAF
F11DDF   Solution of linear system involving preconditioning matrix generated by applying SSOR to real sparse nonsymmetric matrix
F11DEF   Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB, or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
F11DKF   Real sparse nonsymmetric linear systems, line Jacobi preconditioner
F11MDF   Real sparse nonsymmetric linear systems, setup for F11MEF
F11MEF   LU factorization of real sparse matrix
F11MFF   Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
F11MGF   Estimate condition number of real matrix, matrix already factorized by F11MEF
F11MHF   Refined solution with error bounds of real system of linear equations, multiple right-hand sides
F11MMF   Real sparse nonsymmetric linear systems, diagnostic for F11MEF

NAG Fortran Library
GAMS Classification Index
Up (D2a)
Previous (D2a3)
© The Numerical Algorithms Group Ltd, Oxford UK. 2004