
NAG Fortran Library Routine Document

F11BRF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F11BRF is a setup routine, the first in a suite of three routines for the iterative solution of a complex
general (non-Hermitian) system of simultaneous linear equations. F11BRF must be called before F11BSF,
the iterative solver. The third routine in the suite, F11BTF, can be used to return additional information
about the computation.

These three routines are suitable for the solution of large sparse general (non-Hermitian) systems of
equations.

2 Specification

SUBROUTINE F11BRF(METHOD, PRECON, NORM, WEIGHT, ITERM, N, M, TOL,
1 MAXITN, ANORM, SIGMAX, MONIT, LWREQ, WORK, LWORK,
2 IFAIL)

INTEGER ITERM, N, M, MAXITN, MONIT, LWREQ, LWORK, IFAIL
real TOL, ANORM, SIGMAX
complex WORK(LWORK)
CHARACTER*(*) METHOD
CHARACTER*1 PRECON, NORM, WEIGHT

3 Description

The suite consisting of the routines F11BRF, F11BSF, F11BTF is designed to solve the general (non-
Hermitian) system of simultaneous linear equations Ax ¼ b of order n, where n is large and the coefficient
matrix A is sparse.

F11BRF is a setup routine which must be called before F11BSF, the iterative solver. The third routine in
the suite, F11BTF, can be used to return additional information about the computation. A choice of
methods is available:

restarted generalized minimum residual method (RGMRES);

conjugate gradient squared method (CGS);

bi-conjugate gradient stabilized (‘) method (Bi-CGSTAB(‘));

transpose-free quasi-minimal residual method (TFQMR).

3.1 Restarted Generalized Minimum Residual Method (RGMRES)

The restarted generalized minimum residual method (RGMRES) (Saad and Schultz (1986), Barrett et al.
(1994), Dias da Cunha and Hopkins (1994)) starts from the residual r0 ¼ b�Ax0, where x0 is an initial

estimate for the solution (often x0 ¼ 0). An orthogonal basis for the Krylov subspace spanfAkr0g, for
k ¼ 0; 1; 2; . . ., is generated explicitly: this is referred to as Arnoldi’s method (Arnoldi (1951)). The
solution is then expanded onto the orthogonal basis so as to minimize the residual norm kb�Axk2. The

lack of symmetry of A implies that the orthogonal basis is generated by applying a ‘long’ recurrence
relation, whose length increases linearly with the iteration count. For all but the most trivial problems,
computational and storage costs can quickly become prohibitive as the iteration count increases. RGMRES
limits these costs by employing a restart strategy: every m iterations at most, the Arnoldi process is
restarted from rl ¼ b�Axl, where the subscript l denotes the last available iterate. Each group of m
iterations is referred to as a ‘super-iteration’. The value of m is chosen in advance and is fixed throughout
the computation. Unfortunately, an optimum value of m cannot easily be predicted.

F11 – Sparse Linear Algebra F11BRF

[NP3546/20A] F11BRF.1



3.2 Conjugate Gradient Squared Method (CGS)

The conjugate gradient squared method (CGS) (Sonneveld (1989), Barrett et al. (1994), Dias da Cunha and
Hopkins (1994)) is a development of the bi-conjugate gradient method where the nonsymmetric Lanczos
method is applied to reduce the coefficients matrix to tridiagonal form: two bi-orthogonal sequences of
vectors are generated starting from the residual r0 ¼ b�Ax0, where x0 is an initial estimate for the

solution (often x0 ¼ 0) and from the shadow residual r̂r0 corresponding to the arbitrary problem AHx̂x ¼ b̂b,

where b̂b can be any vector, but in practice is chosen so that r0 ¼ r̂r0. In the course of the iteration, the

residual and shadow residual ri ¼ PiðAÞr0 and r̂ri ¼ PiðAHÞr̂r0 are generated, where Pi is a polynomial of

order i, and bi-orthogonality is exploited by computing the vector product �i ¼ ðr̂ri; riÞ ¼ ðPiðAHÞr̂r0;
PiðAÞr0Þ ¼ ðr̂r0; P 2

i ðAÞr0Þ. Applying the ‘contraction’ operator PiðAÞ twice, the iteration coefficients can
still be recovered without advancing the solution of the shadow problem, which is of no interest. The CGS
method often provides fast convergence; however, there is no reason why the contraction operator should
also reduce the once reduced vector PiðAÞr0: this may well lead to a highly irregular convergence which
may result in large cancellation errors.

3.3 Bi-Conjugate Gradient Stabilized (\ell) Method (Bi-CGSTAB(\ell))

The bi-conjugate gradient stabilized (‘) method (Bi-CGSTAB(‘)) (Van der Vorst (1989), Sleijpen and
Fokkema (1993), Dias da Cunha and Hopkins (1994)) is similar to the CGS method above. However,

instead of generating the sequence fP 2
i ðAÞr0g, it generates the sequence fQiðAÞPiðAÞr0g, where the

QiðAÞ are polynomials chosen to minimize the residual after the application of the contraction operator
PiðAÞ. Two main steps can be identified for each iteration: an OR (Orthogonal Residuals) step where a
basis of order ‘ is generated by a Bi-CG iteration and an MR (Minimum Residuals) step where the residual
is minimized over the basis generated, by a method akin to GMRES. For ‘ ¼ 1, the method corresponds
to the Bi-CGSTAB method of Van der Vorst (1989). For ‘ > 1, more information about complex
eigenvalues of the iteration matrix can be taken into account, and this may lead to improved convergence
and robustness. However, as ‘ increases, numerical instabilities may arise. For this reason, a maximum
value of ‘ ¼ 10 is imposed, but probably ‘ ¼ 4 is sufficient in most cases.

3.4 Transpose-Free Quasi-Minimal Residual Method (TFQMR)

The transpose-free quasi-minimal residual method (TFQMR) (Freund and Nachtigal (1991), Freund
(1993)) is conceptually derived from the CGS method. The residual is minimised over the space of the
residual vectors generated by the CGS iterations under the simplifying assumption that residuals are almost
orthogonal. In practice, this is not the case but theoretical analysis has proved the validity of the method.
This has the effect of remedying the rather irregular convergence behaviour with wild oscillations in the
residual norm that can degrade the numerical performance and robustness of the CGS method. In general,
the TFQMR method can be expected to converge at least as fast as the CGS method, in terms of number
of iterations, although each iteration involves a higher operation count. When the CGS method exhibits
irregular convergence, the TFQMR method can produce much smoother, almost monotonic convergence
curves. However, the close relationship between the CGS and TFQMR method implies that the overall
speed of convergence is similar for both methods. In some cases, the TFQMR method may converge
faster than the CGS method.

3.5 General Considerations

For each method, a sequence of solution iterates fxig is generated such that, hopefully, the sequence of the
residual norms fkrikg converges to a required tolerance. Note that, in general, convergence, when it
occurs, is not monotonic.

In the RGMRES and Bi-CGSTAB(‘) methods above, the user’s program must provide the maximum
number of basis vectors used, m or ‘, respectively; however, a smaller number of basis vectors may be
generated and used when the stability of the solution process requires this (see Section 8).

Faster convergence can be achieved using a preconditioner (Golub and van Loan (1996), Barrett et al.
(1994)). A preconditioner maps the original system of equations onto a different system, say

�AA�xx ¼ �bb; ð1Þ
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with, hopefully, better characteristics with respect to its speed of convergence: for example, the condition
number of the coefficients matrix can be improved or eigenvalues in its spectrum can be made to coalesce.

An orthogonal basis for the Krylov subspace spanf �AAk�rr0g, for k ¼ 0; 1; . . ., is generated and the solution
proceeds as outlined above. The algorithms used are such that the solution and residual iterates of the
original system are produced, not their preconditioned counterparts. Note that an unsuitable preconditioner
or no preconditioning at all may result in a very slow rate, or lack, of convergence. However,
preconditioning involves a trade-off between the reduction in the number of iterations required for
convergence and the additional computational costs per iteration. Also, setting up a preconditioner may
involve non-negligible overheads.

A left preconditioner M�1 can be used by the RGMRES, CGS and TFQMR methods, such that
�AA ¼ M�1A � In in (1), where In is the identity matrix of order n; a right preconditioner M�1 can be used

by the Bi-CGSTAB(‘) method, such that �AA ¼ AM�1 � In. These are formal definitions, used only in the
design of the algorithms; in practice, only the means to compute the matrix–vector products v ¼ Au and

v ¼ AHu (the latter only being required when an estimate of kAk1 or kAk1 is computed internally), and

to solve the preconditioning equations Mv ¼ u are required, i.e., explicit information about M, or its
inverse is not required at any stage.

The first termination criterion

krkkp � � ðkbkp þ kAkp kxkkpÞ ð2Þ

is also available for all three methods. In (2), p ¼ 1, 1 or 2 and � denotes a user-specified tolerance

subject to maxð10;
ffiffiffi

n
p

Þ, � � � < 1, where � is the machine precision. Facilities are provided for the
estimation of the norm of the coefficients matrix kAk1 or kAk1, when this is not known in advance, by

applying Higham’s method (Higham (1988)). Note that kAk2 cannot be estimated internally. This

criterion uses an error bound derived from backward error analysis to ensure that the computed solution is
the exact solution of a problem as close to the original as the termination tolerance requires. Termination
criteria employing bounds derived from forward error analysis are not used because any such criteria
would require information about the condition number �ðAÞ which is not easily obtainable.

The second termination criterion

k�rrkk2 � � ðk�rr0k2 þ �1ð �AAÞ k��xxkk2Þ ð3Þ

is available for all methods except TFQMR. In (3), �1ð �AAÞ ¼ k �AAk2 is the largest singular value of the

(preconditioned) iteration matrix �AA. This termination criterion monitors the progress of the solution of the
preconditioned system of equations and is less expensive to apply than criterion (2) for the Bi-CGSTAB(‘)

method with ‘ > 1. Only the RGMRES method provides facilities to estimate �1ð �AAÞ internally, when this
is not supplied (see Section 8).

Termination criterion (2) is the recommended choice, despite its additional costs per iteration when using
the Bi-CGSTAB(‘) method with ‘ > 1. Also, if the norm of the initial estimate is much larger than the
norm of the solution, that is, if kx0k � kxk, a dramatic loss of significant digits could result in complete
lack of convergence. The use of criterion (2) will enable the detection of such a situation, and the iteration
will be restarted at a suitable point. No such restart facilities are provided for criterion (3).

Optionally, a vector w of user-specified weights can be used in the computation of the vector norms in

termination criterion (2), i.e., kvkðwÞp ¼ kvðwÞkp, where ðvðwÞÞi ¼ wi vi, for i ¼ 1; 2; . . . ; n. Note that the

use of weights increases the computational costs.

The sequence of calls to the routines comprising the suite is enforced: first, the setup routine F11BRF must
be called, followed by the solver F11BSF. F11BTF can be called either when F11BSF is carrying out a
monitoring step or after F11BSF has completed its tasks. Incorrect sequencing will raise an error
condition.

In general, it is not possible to recommend one method in preference to another. RGMRES is often used
in the solution of systems arising from PDEs. On the other hand, it can easily stagnate when the size m of
the orthogonal basis is too small, or the preconditioner is not good enough. CGS can be the fastest
method, but the computed residuals can exhibit instability which may greatly affect the convergence and
quality of the solution. Bi-CGSTAB(‘) seems robust and reliable, but it can be slower than the other
methods: if a preconditioner is used and ‘ > 1, Bi-CGSTAB(‘) computes the solution of the preconditioned
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system �xxk ¼ Mxk: the preconditioning equations must be solved to obtain the required solution. The
algorithm employed limits to 10% or less, when no intermediate monitoring is requested, the number of
times the preconditioner has to be thus applied compared with the total number of applications of the
preconditioner. TFQMR can be viewed as a more robust variant of the CGS method: it shares the CGS
method speed but avoids the CGS fluctuations in the residual, which may give rise to instability. Also,
when the termination criterion (2) is used, the CGS, Bi-CGSTAB(‘) and TFQMR methods will restart the
iteration automatically when necessary in order to solve the given problem.
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5 Parameters

1: METHOD – CHARACTER*(*) Input

On entry: the iterative method to be used. The possible choices are:

if METHOD ¼ ’RGMRES’, restarted generalized minimum residual method;

if METHOD ¼ ’CGS’, conjugate gradient squared method;

if METHOD ¼ ’BICGSTAB’, bi-conjugate gradient stabilized (‘) method;

if METHOD ¼ ’TFQMR’, transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ ’RGMRES’; ’CGS’; ’BICGSTAB’ or ’TFQMR’.
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2: PRECON – CHARACTER*1 Input

On entry: determines whether preconditioning is used. The possible choices are:

if PRECON ¼ ’N’, no preconditioning;

if PRECON ¼ ’P’, preconditioning.

Constraint: PRECON ¼ ’N’ or ’P’.

3: NORM – CHARACTER*1 Input

On entry: defines the matrix and vector norm to be used in the termination criteria. The possible
choices are:

if NORM ¼ ’1’, l1 norm;

if NORM ¼ ’I’, l1 norm;

if NORM ¼ ’2’, l2 norm.

Suggested values:

if ITERM ¼ 1, NORM ¼ ’I’;
if ITERM ¼ 2, NORM ¼ ’2’.

Constraints:

if ITERM ¼ 1, NORM ¼ ’1’; ’I’ or ’2’;
if ITERM ¼ 2, NORM ¼ ’2’.

4: WEIGHT – CHARACTER*1 Input

On entry: specifies whether a vector w of user-supplied weights is to be used in the computation of

the vector norms required in termination criterion (2) (ITERM ¼ 1): kvkðwÞp ¼ kvðwÞkp, where

v
ðwÞ
i ¼ wi vi, for i ¼ 1; 2; . . . ; n. The suffix p ¼ 1; 2;1 denotes the vector norm used, as specified

by the parameter NORM. Note that weights cannot be used when ITERM ¼ 2, i.e., when criterion
(3) is used. The possible choices are:

if WEIGHT ¼ ’W’, user-supplied weights are to be used and must be supplied on initial
entry to F11BSF;

if WEIGHT ¼ ’N’, all weights are implicitly set equal to one. Weights do not need to be
supplied on initial entry to F11BSF.

Suggested value: WEIGHT ¼ ’N’.

Constraints:

if ITERM ¼ 1, WEIGHT ¼ ’W’ or ’N’,
if ITERM ¼ 2, WEIGHT ¼ ’N’.

5: ITERM – INTEGER Input

On entry: defines the termination criterion to be used. The possible choices are:

if ITERM ¼ 1, use the termination criterion defined in (2);

if ITERM ¼ 2, use the termination criterion defined in (3).

Suggested value: ITERM ¼ 1.

Constraints:

if METHOD ¼ ’RGMRES’; ’CGS’ or ’BICGSTAB’, ITERM ¼ 1 or 2,
if METHOD ¼ ’TFQMR’, ITERM ¼ 1.
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6: N – INTEGER Input

On entry: the order n of the matrix A.

Constraint: N > 0.

7: M – INTEGER Input

On entry: if METHOD ¼ ’RGMRES’, M is the dimension m of the restart subspace. If
METHOD ¼ ’BICGSTAB’, M is the order ‘ of the polynomial Bi-CGSTAB method. Otherwise, M
is not referenced.

Constraints:

if METHOD ¼ ’RGMRES’, 0 < M � minðN; 50Þ;
if METHOD ¼ ’BICGSTAB’, 0 < M � minðN; 10Þ.

8: TOL – real Input

On entry: the tolerance � for the termination criterion. If TOL � 0:0; � ¼ maxð
ffiffi

�
p

;
ffiffiffi

n
p

�Þ is used,

where � is the machine precision. Otherwise � ¼ maxðTOL; 10�; ffiffiffi

n
p

�Þ is used.

Constraint: TOL < 1:0.

9: MAXITN – INTEGER Input

On entry: the maximum number of iterations.

Constraint: MAXITN > 0.

10: ANORM – real Input

On entry: if ANORM > 0:0, the value of kAkp to be used in the termination criterion (2)

(ITERM ¼ 1).

If ANORM � 0:0, ITERM ¼ 1 and NORM ¼ ’1’ or ’I’, then kAk1 ¼ kAk1 is estimated internally

by F11BSF.

If ITERM ¼ 2, ANORM is not referenced.

Constraint: if ITERM ¼ 1 and NORM ¼ ’2’, then ANORM > 0:0.

11: SIGMAX – real Input

On entry: if ITERM ¼ 2, the largest singular value �1 of the preconditioned iteration matrix;
otherwise, SIGMAX is not referenced.

If SIGMAX � 0:0, ITERM ¼ 2 and METHOD ¼ ’RGMRES’, then the value of �1 will be
estimated internally.

Constraint: if METHOD ¼ ’CGS’ or ’BICGSTAB’ and ITERM ¼ 2, then SIGMAX > 0:0.

12: MONIT – INTEGER Input

On entry: if MONIT > 0, the frequency at which a monitoring step is executed by F11BSF: if
METHOD ¼ ’CGS’ or ’TFQMR’, a monitoring step is executed every MONIT iterations; otherwise,
a monitoring step is executed every MONIT super-iterations (groups of up to m or ‘ iterations for
RGMRES or Bi-CGSTAB(‘), respectively).

There are some additional computational costs involved in monitoring the solution and residual
vectors when the Bi-CGSTAB(‘) method is used with ‘ > 1.

Constraint: MONIT � MAXITN.

13: LWREQ – INTEGER Output

On exit: the minimum amount of workspace required by F11BSF. (See also Section 5 of the
document for F11BSF.)
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14: WORK(LWORK) – complex array Output

On exit: the workspace WORK is initialised by F11BRF. It must not be modified before calling the
next routine in the suite, namely F11BSF.

15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F11BRF
is called.

Constraint: LWORK � 120.

Note: although the minimum value of LWORK ensures the correct functioning of F11BRF, a larger
value is required by the other routines in the suite, namely F11BSF and F11BTF. The required
value is as follows:

Method Requirements

RGMRES LWORK ¼ 120þ nðmþ 3Þ þmðmþ 5Þ þ 1, where m is the dimension of the
basis;

CGS LWORK ¼ 120þ 7n;

Bi-CGSTAB(‘) LWORK ¼ 120þ ð2nþ ‘Þð‘þ 2Þ þ p, where ‘ is the order of the method;

TFQMR LWORK ¼ 120þ 10n,

where

p ¼ 2n if ‘ > 1 and ITERM ¼ 2 was supplied;

p ¼ n if ‘ > 1 and a preconditioner is used or ITERM ¼ 2 was supplied;

p ¼ 0 otherwise.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i

On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11BRF has been called out of sequence.

7 Accuracy

Not applicable.
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8 Further Comments

RGMRES can estimate internally the maximum singular value �1 of the iteration matrix, using �1 � kTk1,
where T is the upper triangular matrix obtained by QR factorization of the upper Hessenberg matrix
generated by the Arnoldi process. The computational costs of this computation are negligible when
compared to the overall costs.

Loss of orthogonality in the RGMRES method, or of bi-orthogonality in the Bi-CGSTAB(‘) method may
degrade the solution and speed of convergence. For both methods, the algorithms employed include
checks on the basis vectors so that the number of basis vectors used for a given super-iteration may be less
than the value specified in the input parameter M. Also, the CGS, Bi-CGSTAB(‘) and TFQMR methods
will restart automatically the computation from the last available iterates, when the stability of the solution
process requires it.

Termination criterion (3), when available, involves only the residual (or norm of the residual) produced
directly by the iteration process: this may differ from the norm of the true residual ~rrk ¼ b�Axk,
particularly when the norm of the residual is very small. Also, if the norm of the initial estimate of the
solution is much larger than the norm of the exact solution, convergence can be achieved despite very large
errors in the solution. On the other hand, termination criterion (3) is cheaper to use and inspects the
progress of the actual iteration. Termination criterion (2) should be preferred in most cases, despite its
slightly larger costs.

9 Example

The example solves an 8� 8 nonsymmetric system of simultaneous linear equations using the bi-conjugate
gradient stabilized method of order ‘ ¼ 2, where the coefficients matrix A has a random sparsity pattern.
An incomplete LU preconditioner is used (routines F11DAF and F11DBF).

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* F11BRF Example Program Text
* Mark 19 Release. NAG Copyright 1999.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, LA, LIWORK, LWORK
PARAMETER (NMAX=1000,LA=10000,LIWORK=7*NMAX+2,LWORK=6*NMAX)

* .. Local Scalars ..
real ANORM, DTOL, SIGMAX, STPLHS, STPRHS, TOL
INTEGER I, IFAIL, IFAIL1, IFAILX, IREVCM, ITERM, ITN,

+ LFILL, LWREQ, M, MAXITN, MONIT, N, NNZ, NNZC,
+ NPIVM
LOGICAL LOOP
CHARACTER MILU, NORM, PRECON, PSTRAT, WEIGHT
CHARACTER*8 METHOD

* .. Local Arrays ..
complex A(LA), B(NMAX), WORK(LWORK), X(NMAX)
real WGT(NMAX)
INTEGER ICOL(LA), IDIAG(NMAX), IPIVP(NMAX), IPIVQ(NMAX),

+ IROW(LA), ISTR(NMAX+1), IWORK(LIWORK)
* .. External Subroutines ..

EXTERNAL F11BRF, F11BSF, F11BTF, F11DNF, F11DPF, F11XNF
* .. Executable Statements ..

WRITE (NOUT,*) ’F11BRF Example Program Results’
*
* Skip heading in data file
*

READ (NIN,*)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*
* Read or initialize the parameters for the iterative solver
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*
READ (NIN,*) METHOD
READ (NIN,*) PRECON, NORM, WEIGHT, ITERM
READ (NIN,*) M, TOL, MAXITN
READ (NIN,*) MONIT
ANORM = 0.0e0
SIGMAX = 0.0e0

*
* Read the parameters for the preconditioner
*

READ (NIN,*) LFILL, DTOL
READ (NIN,*) MILU, PSTRAT

*
* Read the number of non-zero elements of the matrix A, then read
* the non-zero elements
*

READ (NIN,*) NNZ
DO 20 I = 1, NNZ

READ (NIN,*) A(I), IROW(I), ICOL(I)
20 CONTINUE

*
* Read right-hand side vector b and initial approximate
* solution x
*

READ (NIN,*) (B(I),I=1,N)
READ (NIN,*) (X(I),I=1,N)

*
* Calculate incomplete LU factorization
*

IFAIL = 0
CALL F11DNF(N,NNZ,A,LA,IROW,ICOL,LFILL,DTOL,PSTRAT,MILU,IPIVP,

+ IPIVQ,ISTR,IDIAG,NNZC,NPIVM,IWORK,LIWORK,IFAIL)
*
* Call F11BRF to initialize the solver
*

IFAIL = 0
CALL F11BRF(METHOD,PRECON,NORM,WEIGHT,ITERM,N,M,TOL,MAXITN,

+ ANORM,SIGMAX,MONIT,LWREQ,WORK,LWORK,IFAIL)
*
* Call repeatedly F11BSF to solve the equations
* Note that the arrays B and X are overwritten
*
* On final exit, X will contain the solution and B the residual
* vector
*

IFAIL = 0
IREVCM = 0
LOOP = .TRUE.

*
LWREQ = LWORK

40 CONTINUE
CALL F11BSF(IREVCM,X,B,WGT,WORK,LWREQ,IFAIL)
IF (IREVCM.EQ.-1) THEN

IFAILX = -1
CALL F11XNF(’Transpose’,N,NNZ,A,IROW,ICOL,’No checking’,X,B,

+ IFAILX)
ELSE IF (IREVCM.EQ.1) THEN

IFAILX = -1
CALL F11XNF(’No transpose’,N,NNZ,A,IROW,ICOL,’No checking’,

+ X,B,IFAILX)
ELSE IF (IREVCM.EQ.2) THEN

IFAIL1 = -1
CALL F11DPF(’No transpose’,N,A,LA,IROW,ICOL,IPIVP,IPIVQ,

+ ISTR,IDIAG,’No checking’,X,B,IFAILX)
ELSE IF (IREVCM.EQ.3) THEN

IFAIL1 = 0
CALL F11BTF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,WORK,LWREQ,

+ IFAIL1)
WRITE (NOUT,99999) ITN, STPLHS
WRITE (NOUT,99998)
WRITE (NOUT,99996) (X(I),I=1,N)
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WRITE (NOUT,99997)
WRITE (NOUT,99996) (B(I),I=1,N)

ELSE IF (IREVCM.EQ.4) THEN
LOOP = .FALSE.

END IF
IF (LOOP) GO TO 40

*
* Obtain information about the computation
*

IFAIL1 = 0
CALL F11BTF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,WORK,LWREQ,IFAIL1)

*
* Print the output data
*

WRITE (NOUT,99995)
WRITE (NOUT,99994) ’Number of iterations for convergence: ’,

+ ITN
WRITE (NOUT,99993) ’Residual norm: ’,

+ STPLHS
WRITE (NOUT,99993) ’Right-hand side of termination criterion:’,

+ STPRHS
WRITE (NOUT,99993) ’1-norm of matrix A: ’,

+ ANORM
*
* Output x
*

WRITE (NOUT,99998)
WRITE (NOUT,99996) (X(I),I=1,N)
WRITE (NOUT,99997)
WRITE (NOUT,99996) (B(I),I=1,N)

END IF
STOP

*
99999 FORMAT (/1X,’Monitoring at iteration no.’,I4,/1X,1P,’residual no’,

+ ’rm: ’,e14.4)
99998 FORMAT (/2X,’ Solution vector’)
99997 FORMAT (/2X,’ Residual vector’)
99996 FORMAT (1X,’(’,1P,e16.4,’,’,1P,e16.4,’)’)
99995 FORMAT (/1X,’Final Results’)
99994 FORMAT (1X,A,I4)
99993 FORMAT (1X,A,1P,e14.4)

END

9.2 Program Data

F11BRF Example Program Data
8 N
’TFQMR’ METHOD
’P’ ’1’ ’N’ 1 PRECON, NORM, WEIGHT, ITERM
1 1.0e-8 20 M, TOL, MAXITN
2 MONIT
0 0.0 LFILL, DTOL
’N’ ’C’ MILU, PSTRAT
24 NNZ

( 2., 1.) 1 1
(-1., 1.) 1 4
( 1.,-3.) 1 8
( 4., 7.) 2 1
(-3., 0.) 2 2
( 2., 4.) 2 5
(-7.,-5.) 3 3
( 2., 1.) 3 6
( 3., 2.) 4 1
(-4., 2.) 4 3
( 0., 1.) 4 4
( 5.,-3.) 4 7
(-1., 2.) 5 2
( 8., 6.) 5 5
(-3.,-4.) 5 7
(-6.,-2.) 6 1
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( 5.,-2.) 6 3
( 2., 0.) 6 6
( 0.,-5.) 7 3
(-1., 5.) 7 5
( 6., 2.) 7 7
(-1., 4.) 8 2
( 2., 0.) 8 6
( 3., 3.) 8 8 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( 7., 11.)
( 1., 24.)
(-13.,-18.)
(-10., 3.)
( 23., 14.)
( 17., -7.)
( 15., -3.)
( -3., 20.) B(I), I=1,...,N
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) X(I), I=1,...,N

9.3 Program Results

F11BRF Example Program Results

Monitoring at iteration no. 2
residual norm: 8.2345E+01

Solution vector
( 6.9055E-01, 1.4236E+00)
( 7.3931E-02, -1.1880E+00)
( 1.4778E+00, 4.7846E-01)
( 5.6572E+00, -3.0786E+00)
( 1.4243E+00, -1.1246E+00)
( 1.0374E-01, 1.9740E+00)
( 4.4985E-01, -1.2715E+00)
( 2.5704E+00, 1.7578E+00)

Residual vector
( 1.7772E+00, 4.6797E+00)
( 1.0774E+00, 6.4600E+00)
( -3.2812E+00, -1.1314E+01)
( -3.8698E+00, -1.6438E+00)
( 8.9912E+00, 1.1100E+01)
( 9.7428E+00, -4.6218E-01)
( 3.1668E+00, 2.8721E+00)
( -1.0323E+01, 1.5837E+00)

Final Results
Number of iterations for convergence: 4
Residual norm: 3.6519E-11
Right-hand side of termination criterion: 8.9100E-06
1-norm of matrix A: 2.7000E+01

Solution vector
( 1.0000E-00, 1.0000E-00)
( 2.0000E+00, -1.0000E+00)
( 3.0000E+00, 1.0000E-00)
( 4.0000E+00, -1.0000E-00)
( 3.0000E+00, -1.0000E-00)
( 2.0000E+00, 1.0000E-00)
( 1.0000E+00, -1.0000E-00)
( 9.4494E-14, 3.0000E+00)

Residual vector
( -1.4388E-13, 3.0820E-12)
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( -4.3450E-12, 6.2030E-12)
( -7.6383E-14, -3.4035E-12)
( -2.3341E-12, 2.8066E-13)
( 1.6875E-12, 3.7303E-12)
( 2.7285E-12, 5.7021E-13)
( 1.6147E-12, -1.3367E-12)
( -1.3323E-13, -4.8495E-12)
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