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ABSTRACT

The final step in the detection of mutations is to
determine the sequence of the suspected mutant and
to compare it with that of the wild-type, and for this
fluorescence-based sequencing instruments are widely
used. We describe some simple algorithms for
comparing sequence traces which, as part of our
sequence assembly and analysis package, are proving
useful for the discovery of mutations and which may
also help to identify misplaced readings in sequence
assembly projects. The mutations can be detected
automatically by a new program called TRACE_DIFF
and new types of trace display in our program GAP4
greatly simplify visual checking of the assigned
changes. To assess the accuracy of the automatic
mutation detection algorithm we analysed 214 sequence
readings from hypermutating DNA comprising a total
of 108 497 bases. After the readings were assembled
there were 1232 base differences, including 392 Ns and
166 alignment characters. Visual inspection of the
traces established that of the 1232 differences, 353
were real mutations while the rest were due to base
calling errors. The TRACE_DIFF algorithm automatically
identified all but 36, with 28 false positives. Further
information about the software can be obtained from
http://www.mrc-lmb.cam.ac.uk/pubseq/

INTRODUCTION

Mutation detection is becoming increasingly important as a
clinical diagnostic tool and as part of genome research and several
techniques are currently in use. These include single-stranded
conformational polymorphism analysis (1), denaturing gradient
gel electrophoresis (2), heteroduplex analysis (3,4), chemical
mismatch cleavage (5) and direct sequencing. A review of these
techniques has been given by Grompe (6). Ultimately, direct
sequencing is required to define the precise location and nature of
any change. For this final step fluorescence-based sequencing
instruments are now extensively used.

Because no single sequence reading obtained from a fluorescence-
based sequencing instrument is 100% reliable, the search for
mutations is not simply a matter of comparing a suspected
divergent sequence against that of the wild-type: differences
between two sequences can be due to mutations or to base calling

errors and therefore the problem is to recognize real mutations
within a background of base calling errors.

To eliminate base calling errors by visual comparison of
wild-type and mutant traces, Tamary (7) used the ABI SeqEd
program and Jonsson (8) used an early version of our sequence
assembly software. Automated detection of heterozygotes using
improvements to version 1.2 of the PE/ABI Factura program has
been described by Phelps (9). In this case traces were analysed to
identify base positions that exhibited a secondary signal strength
greater than a selected percentage threshold of the primary peak.
A further method of this type was described by Kwok (10) and
a more recent method from Nickerson (11) has the advantage of
being used in conjunction with a sequence alignment editor.

Our main interest is in automating the accurate location of base
changes. The method we have devised employs sequences
determined by a fluorescence-based sequencing instrument. The
new software then normalizes and subtracts the pairs of wild-type
and mutant traces to produce a new set of traces which represent
their differences. The value of these calculations is two-fold: first,
they enable reliable automatic detection of mutations; second,
they greatly simplify visual inspection of traces because the
software can display the traces of the two original sequences plus the
trace of their differences. To illustrate the basic idea, in Figure 1 we
show an example of the trace difference display from our
sequence assembly program GAP4 (12). The two top panels
contain the traces from a pair of readings and the bottom panel
contains a plot of their trace differences. As can be seen, the
difference traces are effectively flat except where a mutation
occurs, resulting in a positive difference in one trace coincident
with a negative difference in the other. It is obviously much easier
to use this plot to direct visual inspection of the results than it is
to look for differences throughout the whole of the two original
traces. For automatic detection of mutations our new software
analyses the trace differences to look for significant and
coincident peaks; one positive and the other negative, and marks
those above a given threshold.

METHODS

Methods background

The new routines we describe are additions to the extensive set of
methods that we have developed for use in large scale sequencing
projects. Of these existing methods, the following components
are used in conjunction with the new routines described in this
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Figure 1. This shows the traces as displayed by the GAP4 contig editor and illustrates the features of the trace differences as analysed by TRACE_DIFF. The top trace
is a consensus trace, the middle one is from an individual reading and the bottom one the difference between the other two. In general the difference trace contains
very few features, however, three base changes are shown with their associated peaks in the differences plot. The left hand mutation (C→T) causes a pair of strong
peaks in opposite directions with a small context effect. The next mutation (T→G) has strong opposite peaks and a strong context effect peak. The third mutation has
quite strong opposite peaks and a single context effect peak.

paper. SCF files (13) are used for storing trace and sequence data
generated by sequencing instruments; Experiment files (14) are
used for transferring data about sequences between programs; the
program GAP4 (12) is used for aligning and editing sequences.
GAP4 obtains its data from Experiment files and stores the
assembled sequences in its own database. The GAP4 contig editor
can display and scroll (in register) sets of traces from aligned
readings. Segments of sequences can be annotated and the
annotated segments are marked with coloured boxes, called tags.
Each tag type has its own identifying colour and the contig
editor’s cursor can jump from one tag to the next.

During conventional sequencing projects each base is generally
determined from several independent readings and so the accuracy
of each reading is less important than it is for mutation detection
studies. Here, we cannot rely on base calling alone, but instead use
it in conjunction with numerical analysis of the trace data.

Mutation detection criteria

Our assumption is that the traces are a more reliable picture of the
data than the base calls, and that, aside from sequence context
effects (15,16), the shapes of the traces are reproducible. By
context effects we mean the differences in the heights of the peaks
are a function of more than just a single base. Hence, a single base
difference between two segments of DNA can result in trace
differences, not only for the divergent base, but also for its
immediate neighbours (see the bottom trace of Fig. 1). The nature
of the context effects also depends on the specific sequencing
protocol employed.

For the purpose of mutation detection a false positive will be a
difference between two sequences which is the result of a base
calling error. A false negative will be caused by the rare event of
a base calling error disguising a real base difference. For
automatic detection of mutations, we can search for trace
differences above a specified minimum value that are accompanied
by a change to the called base, although this will necessarily miss
the rare cases where a base called in error disguises a real
mutation. Context effect changes to the peak heights of bases
adjacent to a mutated base will not be accompanied by a base
change, and therefore will not be reported as mutations. So, our
first criterion (I) for detection of a mutation is that the called base
should be different from that of the wild-type.

In order to compare the traces from a pair of sequences we need
to normalize the data. We have tried several methods of scaling
the amplitudes of the traces (the y direction), including expressing
the values as proportions of the total signal at each point, but at
present we find that we obtain the best results by leaving the data
unscaled in y. For scaling along the traces (the x direction), we
need to get the peaks for the equivalent bases from the two sets
of traces in register. If there are no insertions or deletions this is
straightforward, otherwise there are a number of possible cases.
The first case is that the base calling software has called an extra
base but there is no extra peak and the base calling is incorrect.
The second is that the base calling software has missed a base for
which there is a peak. The other cases are not base calling errors
but genuine insertion and deletion differences between wild-type
and mutant. The software uses a dynamic programming algorithm
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to align the sequences and then the traces are re-sampled to
produce two new sets of traces.

Let tiw(x) and tim(x) be the heights of the wild-type and mutant
traces at trace sample position x for each base type i = A, G, C or
T. (In our data, for each peak/base there are typically around 12
sample points for each base type.)

The differences between the wild-type and mutant traces are

di(x) = tiw(x) – tim(x)

It is these values that we assess and, for example, where a single
base is changed, say A to T, we would expect to observe
abnormally large magnitudes for dA(x) and dT(x), one positive
and the other negative. The significance of the values di(x) is
assessed by first calculating their mean m and standard deviation
s over the length of the reading and then locating all positions for
which the observed value exceeds a threshold defined by the user.
The values of m and s are the combined values for all di(x). We
chose to use the mean and standard deviation because we needed
a value that depended on the sequence being analysed (rather than
use a fixed value for all sequences), but, as described above, this
calculation is dependent on the number of mutations. Therefore,
the calculation of the mean and standard deviation is restricted to
the segments of the trace differences that correspond to the
troughs between the peaks of the original data. We also restrict the
search of di(x) to the segments that correspond to the positions of
the peaks in the original data. Context effects may result in
changes to the heights of peaks, but are not expected to produce
a positive change for one base type and a negative change for
another. Referring again to Figure 1, we see that at base position
179 in the trace difference plot there is a C→T mutation resulting
in strong peaks (in opposite directions) for each of these base
types, but this is accompanied by a small context effect peak at
base position 180. A more striking example can be seen at base
position 184 in the differences plot: here a T→G mutation (with
peaks in opposite directions) is followed by a large change in the
A trace. Both of these examples show that real mutations exhibit
strong peaks in opposite directions and context effects tend to
produce peaks in only one direction.

So our second criterion (II ) for a mutation at position x is that
there exist two base types i and j such that

di(x) ≥ m +  n.s 1

dj(x) ≤ m – n.s 2

and where n is a value set by the user.
We assume that if criterion II  alone is satisfied then it

corresponds to a context effect, and if criterion I  alone is satisfied
then it corresponds to a base calling error. If they are both satisfied
at the same position then a mutation is reported.

Automatic mutation detection

For any individual prospective mutant sequence the processing is
generally performed in two steps. First, a new program,
TRACE_DIFF, is used to align and compare the mutant and
wild-type sequences and traces and to locate possible mutations.
Second, the sequence is assembled into a GAP4 database from
where users can visually check the differences between the
wild-type and mutant traces. As explained below, using one of the
search modes in GAP4, the visual inspection can be performed
very rapidly.

To facilitate batch processing of sequence readings for
mutation detection we have added a new type of Experiment file
record (WT) to contain the name of each reading’s wild-type trace
file. Then TRACE_DIFF can get all the information it needs from
the readings’ Experiment file. Also, all mutations detected by
TRACE_DIFF are written back to the reading’s Experiment file
as mutation tags and the peak height from the difference trace is
recorded in the tags’ comment field. As all the information
needed for processing (apart from user-supplied parameters that
are common to all readings) are in each reading’s Experiment file,
any number of readings can be processed in a single batch.

The mutation detection program TRACE_DIFF performs the
following steps.

Get the options and parameters selected by the user such as the
threshold n used in equations 1 and 2 and the name(s) of input
file(s) and possibly an output file. Because, in general, the traces
are poor at both ends of readings, the user selects a start and end
point in base positions to define the range over which the peak
detection routine should be applied.

Read-the wild type and mutant traces and sequences.
Use dynamic programming to align the two sequences.
Use the sequence alignment to align the two traces.
Compare the two sets of traces to create a new set that

represents the differences between them.
Calculate the mean and standard deviation of the difference traces.
Scan the difference traces and locate all peaks where criterion

II  is satisfied. If such a peak corresponds to a base difference
(i.e. criterion I  is also satisfied) report it. Note that TRACE_DIFF
can also be used in a mode which reports all positions with
significant trace differences, even though the called base is identical
to that of the wild-type.

If requested, write the trace differences as a new SCF format
file. The sequence of this file denotes all the suspected mutations
discovered by TRACE_DIFF using the IUBC (17) redundant
base symbols in upper and lower case, e.g. Y denotes a C→T
change and y a T→C change. This SCF file can be viewed just
like a normal trace file.

If the mutant sequence’s trace file was accessed indirectly by
using the data on the WT line of its Experiment file, then
TRACE_DIFF can write annotation data into this Experiment file
to denote the positions of all the detected mutations. If this file is
assembled into a GAP4 database these annotated bases will
appear as ‘mutation tags’.

Checking for mutations with the GAP4 contig editor

Since the original version of the GAP4 contig editor was
described many new features have been added. A view of the
editor exhibiting some of the modes relevant to mutation
detection is shown in Figure 2. Datasets for mutation studies are
often very large and so we have added a vertical scroll bar to
enable all readings to be viewed whatever the depth of the
alignment. Reading names can now also be scrolled horizontally.
Base accuracy estimates for machine-read sequence data were
introduced in Bonfield and Staden (18) by writing bases below a
given quality threshold in red. We have extended this to use grey
scales to depict base quality or confidence. In Figure 2 we have
switched on a GAP4 display mode which, by changes to the
background colour, highlights all edits that have been made:
deletions are shown in red, changes in pink, padding characters
in light green and modified confidence values in blue. Note that
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Figure 2. An example of the GAP4 contig editor showing modes of operation useful for mutation detection. A vertical scroll bar enables alignments of any depth to
be viewed. Individual readings are numbered, named and written left to right. Accuracy estimates or confidence values for each base are shown using grey scales:
the darker the background the poorer the data. Mutation tags are shown in dark green (for example there are three visible in the top sequence). Changes to the original
base calls or accuracy estimates are also colour coded by changes to the background colour: deletions are shown in red, base changes in pink, padding characters in
light green and modified confidence values in blue.

the edit positions are not stored as tags, but are retained
automatically each time a change is made to the data. Mutation
tags are dark green and so, for example, there are three on the top
sequence (LEA938), whose trace was shown in Figure 1.

Within the GAP4 contig editor, to facilitate the use of trace
comparisons for checking and detecting mutations the following
new features have been added. Although, for the convenience of
users, there are several methods of selection, there are, in essence,
two new modes of operation. The first, like TRACE_DIFF,
compares the traces from any pair of overlapping readings and
creates a new trace display of their differences. This display, as
seen in Figure 1, results in three sets of traces appearing on the
screen. The difference trace is calculated ‘on the fly’ and the three
sets of traces can be horizontally scrolled in register using the
cursor in the contig editor.

The second mode is more complicated in that the trace of a
selected reading is compared with a ‘consensus trace’ calculated
from the readings it overlaps. The consensus trace and its
differences from the traces of the selected reading are displayed
as shown in Figure 1. The consensus trace is the average trace
found by summing and scaling selected traces at each point.
Optionally, the segments of the trace that correspond to a position
where the called base for a reading does not match the consensus
sequence are not included in the consensus trace calculation. In
this way, the expected trace for the wild-type can be created from
a set of mutant sequences. The consensus traces can be saved to
a file in SCF format.

If, prior to assembly into the GAP4 database, the readings have
been analysed with TRACE_DIFF to produce mutation tags, the
contig editor search function can step from tag to tag whilst
simultaneously scrolling traces and their difference trace. In this
way, the user can check each possible mutation assignment and
delete the tags for those that look false.

Obtaining an overview using the GAP4 template display

The GAP4 template display can provide an overview of all the
mutations in a set of readings. Figure 3 shows readings as red

arrows and tags as small coloured rectangles. Along the base of
the display is a scale marked in 100s of bases and the vertical
black line is a cross-hair. Tags are shown both on the individual
readings and on the scale at the bottom. We were particularly
interested in the overall distribution of mutations and this display
clearly shows that the majority are found to the left of the
cross-hair. This display can also be used to immediately identify
polymorphic residues in population studies.

Choosing a representative wild-type sequence

A suitable wild-type trace for use by TRACE_DIFF and GAP4
can be a single high quality reading or (and this has given the best
results for our data) the consensus from several less good readings
processed by GAP4. As mentioned above, GAP4 can even create
one by, at each point, only including the components of traces that
produce the consensus base. Alternatively, it may be beneficial to
always include the wild-type DNA on the gel used to determine
the suspected mutant sequences. For consistent results it is
probably best to use GAP4 to create a single consensus trace for
use in all experiments.

RESULTS

The mutation detection program TRACE_DIFF is being used to
study somatic hypermutation in immunoglobulin genes. In Table 1,
column A, we show the results of applying TRACE_DIFF to
three sets of readings (214 in total) determined as part of the
somatic hypermutation study. The sequences were obtained from
mice containing immunoglobulin κ light chain transgenes. The
transgenic lines were Lk6 (19), Lk[∆Li] (20) and LK045
(C.Rada, unpublished results). The sequences were obtained by
PCR and cloning in M13mp18 as previously described (21).
Sequencing was performed using fluorescent dye terminators
(Thermosequenase cycle sequencing pre-mix kit from Amersham
Life or ABI Prism Dye terminator cycle sequencing ready
reaction kit with AmpliTaq DNA polymerase FS from Applied
Biosystems) in an ABI 377 sequencer.
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Figure 3. Here the GAP4 template display shows readings as red arrows and tags as small coloured rectangles. Along the base of the display is a scale marked in 100s
of bases and the vertical black line is a cross-hair. In this example tags automatically generated by TRACE_DIFF are shown in green, false negatives have been manually
edited to red and false positives to yellow.

Table 1. Comparison of automated versus visual detection of mutations

A B C

Number of readings  214  65  65

Number of bases 108 497 43 741 36 400

Average analysed length  503  673  560

Base differences 1 232  274  162

Real mutations  353  165  132

TRACE_DIFF false positives  28  15  0

TRACE_DIFF false negatives  36  5  0

The automatic mutation detection program TRACE_DIFF was applied to two sets
of sequence readings. Column A, dye terminator data; column B, BigDye terminator
data loosely clipped for quality; column C, the same readings as column B, but quality
clipped more severely. For column A, threshold n = 4.0; for columns B and
C, n = 3.0.

For each of the three sets of sequences the consensus trace used
by TRACE_DIFF was generated from five of the better quality
readings. Prior to mutation analysis the readings were automatically
clipped of poor quality data at either end using TRACE_CLIP
(R.Staden, unpublished results). The threshold n was set at 4.0
and searches were performed for bases 10–600 within the clipped
data. The value (4.0) used for n was derived from work on a
separate set of data (not included in the analysis) and was not
tuned to give the best results for the three test sets. The results
from TRACE_DIFF were compared with those obtained from

scanning the complete traces by eye after the readings had been
assembled into a GAP4 database.

The test data consisted of 108 497 bases called using the
standard ABI software. After the readings had been aligned with
their consensus sequences they contained 1232 differences, of
which 392 were bases called as unknown (N) and a further 166 were
padding characters introduced during alignment. Visual inspection
showed that there were 353 real mutations, and with n = 4.0
TRACE_DIFF missed 36 of them and found 28 false positives.
The false positives tended to be at the two ends of the readings,
where the data were less reliable, and the false negatives were
almost entirely due to the weak G after A problem that is found
in the chemistry used.

While this manuscript was in preparation we received the
materials to use the new ABI BigDye terminators and found a
marked improvement in the sequences obtained: their lengths
were increased and the weak G problem was almost non-existent.
The results from one batch of data are shown in Table 1, columns
B and C. Column B contains results from sequences that were
loosely clipped for quality, giving an average analysis length per
reading of 673 bases, and column C has the results when the
readings were clipped more severely, to leave only high quality
data of an average analysed length of 560 bases. As can be seen,
there are far fewer base calling errors or uncertainties for both
ranges. Using the threshold parameter n set to 3.0 for the extended
range set, TRACE_DIFF missed five mutations and found 15 false
positives and for the narrower range, it missed no mutations and
gave no false positives.
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DISCUSSION

We have described simple yet very useful methods for the
detection and identification of mutations when sequences are
determined using fluorescence-based sequencing instruments. As
we have demonstrated, numerical treatment of the peaks is an
effective method of automatic mutation detection and, second,
the way that the differences are displayed within GAP4 makes it
very much easier for the results to be checked visually.

We have demonstrated the reliability of automatic mutation
detection for dye terminators and, for a more limited dataset, the
new BigDye terminators. Given the wide choice of instruments
and protocols in use it is not possible for us to cover them all.
Nevertheless, we believe that those using the programs will
quickly be able to establish suitable threshold values for
TRACE_DIFF appropriate to the sequencing method of their
choice. Obviously, the choice of threshold value n also depends
on the type of project being undertaken: for some work an error
rate similar to that obtained for our test data would be acceptable
and no visual checking within GAP4 would be required, but for
other projects the threshold would need to be set low enough to
give a high chance of finding all possible mutations and visual
inspection using the tag search routine would be essential in order
to rule out false positives. For this latter type of project we have
considered a modification of the tag searching routines that would
locate the mutation tags in descending order of trace difference
peak height.

We would like to emphasize the convenience of the overall
environment provided by our methods. The readings can be
automatically processed and searched for mutations in batches of
any size and then assembled into a GAP4 database. With the
contig editor, its search facilities and trace difference displays the
data can then be checked rapidly by eye. The methods have been
in routine use here for 1 year.

We have concentrated on the use of the new methods for
mutation detection, but believe that they may have a role to play
in genome sequencing projects. In very repetitive regions of
genomes, where very long repeats differ at only a few positions,
assembly engines can easily create contigs that contain segments
in which almost identical but unrelated readings have been
aligned together. These repetitive regions are problematical, as it
is difficult to determine how many copies of each repeated
element there are and then to fit them together in the right order.
The new facility in the GAP4 contig editor to compare a trace

against the consensus trace can be used to find misplaced readings
and this procedure could be automated if it proved useful.

Information about obtaining the programs (for UNIX systems
only) is available from the WWW address given in the abstract.
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