
SGE 6.0 configuration guide, version 1.1

Juha Jäykkä
juolja@utu.fi

Department of Physics
Laboratory of Theoretical Physics

University of Turku

18.03.2005



First, some notes

This needs to be revised to include GRID queues.

Also, some LAM/MPICH issues need to be discussed and
decided upon.



Installing SGE 6.0u3

Installing SGE 6.0u3

As per O-P’s instructions. When we got the SGE 6 packages
and O-P’s installation instructions, I went on to install it on
topaasi.

With some real-time assistance from O-P, all went exactly
according to his instructions. What you might want to check is
that the nodes really have yum installed before you start. We
had two nodes, installed in December and January, that did
not have. There had been some rpm’s missing. O-P fixed that
in topaasi and I think in all other clusters, too, but please
check. (Nothing will crash if you don’t - those nodes just won’t
have SGE 6 on them.)



Upgrading from SGE 6.0u3 to SGE 6.0u4

Why?

Because backfilling - the whole reason to upgrade to 6.0 in the
first place - is broken in u3.

How?

a) grab from CVS the version with V60_u4_TAG or download
the source, compile and install

b) wait until CSC packages it, then install as per CSC’s
instructions



Upgrading continued, method a

Upgrading continued, method a)

compile as per Sun’s instructions
stop SGE processes on front end

jobs need to be stopped/suspended/killed - they will run
happily without the sge queue master

install as per Sun’s instructions

do not restart sge yet

tar up /opt/gridengine, copy tar to nodes

make note of sge processes running on nodes, kill them

untar the tarball, restart sge processes on nodes and front
end



Upgrade notes

Upgrade notes

Note that upgrading and restarting SGE6u3 to u4 keeps the
queues intact, if done correctly. I cannot guarantee that my
method is correct, so please consult Sun’s docs first. The
above method a is what I did with topaasi and it worked there.

Note also that method a does not survive a node reinstall,
since reinstall will install CSC’s u3 version until CSC updates
it to u4.



Configuring SGE 6.0u4

I will skip configuring u3, since it is the same except that you get
no advantage of it.

Configuring SGE 6.0u4

default config is a FIFO, except multi-cpu jobs are overridden
by serial jobs

proper configuration requires some background info

grain of salt - I may not understand it all

SGE 5 vs. 6

queues have been renamed to queue instances (still
on-node)

a new beast called cluster queue, which is what we’ve been
waiting for

cluster queue consists of queue instances and spans the
whole cluster



Resource reservation

CSC default install

one cluster queue, called all.q
serial jobs override parallel ones ⇒ we need to do something

either split the cluster in two: parallel nodes and serial node
will cause lots of idle time
not useful for small sites

another solution uses a thing called backfilling

Resource reservation

jobs can request RR to reserve their resources even when
they are still in the queue

gives them chance to run even with serial jobs in the queue

RR will happily let all CPUs idle waiting for a really big job

to reduce number of idle CPUs, backfilling is used

nicely, backfilling and RR are both turned off by default



Configuring RR and backfilling

Configuring RR and backfilling

all.q reprioritises the jobs in the queue every 15 seconds

qstat shows this priorised order

after sorting, schedd tries to dispatch the highest priority job

if its dispatched, the priorisation starts again
what if the highest priority job cannot be run?

by default, SGE goes downwards on the queue and runs the
first job it can - overriding the priorities!
resource reservation and backfilling!!!

Resource reservation (CPU’s, mem...)

happens when the highest priority job cannot be run and

this job requests RR and

there are free resources



Resource reservation

Suppose a parallel job at the top of the queue has triggered RR

queue is resorted as if the RR job had been dispatched

if, after reservation, there are free CPUs, a job is dispatched
normally

if there are no free CPU’s, SGE tries to backfill

Backfill

critcal point is h_rt resource

SGE looks at currently running jobs, checks when they will
be finished at the latest

let these times be T (1), . . . , T (n)

let the highest priority job which fits in the RR’d CPUs have
h_rt value such that, if dispatched now, it will finish at
T (n + 1)

if T (n + 1) < min{T (1), . . . , T (n)}, the job n + 1 is dispatched

rationale being, it does not hurt anyone



Notes on priorisation

Urgency values

priorities calculated from three values

default (and topaasi’s) setup makes two of these zero, only
one called urgency is non-zero

measures the resources the job needs

higher values give higher priorities (backwards? no!)

encourages users to reserve just the resources they really
need

How to make this happen

please read sge_priority man page

this are topaasi’s config; it works well



How to make this happen

How to make this happen: qconf -msconf

1 “max_reservation” must be > 0 (topaasi has 20)
2 useful to se “weight_waiting_time” above zero

enables any job to eventually go through - RR or not
topaasi has this = 500

3 set “default_duration” to non-zero value; topaasi has 337
hours; is not enforces, but read on...

4 I set “notify_time” to 10 minutes, but not sure of its meaning
Who knows?

5 A bug in SGE6 makes about 30% of parallel jobs to vanish;
two workarounds exist

1 set “reprioritize_interval” to “00:02:00” and “schedule_interval”
to “00:01:00”

2 install SGE 6.0u4, it contains another workaround
6 set “h_rt” for the queue; it’s enforced; topaasi has 337 hours -

for a reason (qconf -mq all.q)



User education

Now your queues are set up, but the users need to know what to
do to use them. There are several things the user should know.
The following are all command line parameters for qsub (they can
also be specified in the job script).

-R y Parallel jobs need this in order to reserve resources.
Otherwise they will not! You may restrict use of -R y to users
or groups.

-l h_rt Maximum wall clock time a job may use. Used for backfilling
and enforced by the scheduler by sending a SIGKILL to the
job when this is reached. At least LAM jobs WILL NOT GET
this signal, though (only mpirun gets it).

-l s_rt Soft wall clock limit; used to warn the job before it hits the
h_rt value. Scheduler sends SIGUSR1 when this is reaced,
but again I think LAM jobs won’t get it (unless mpirun passes
it to the processes). Also, it’s useless to set this ≥ h_rt, but
qsub does NOT check for this.



Parameters

-l h_cpu Per cpu time limit; otherwise like h_rt, but please note that
CPU time is always ≤ wall clock time. In an ideal situation
they equal, but this never happens in practice.

-l s_cpu Per cpu soft time limit; scheduler tells the job that this has
been reached by sending it SIGXCPU. Again, LAM...

-notify Needed to get the signals to the jobs - if I have understood
correctly. It does no harm to specify this in any case.



Closing

Changing queue configuration: qconf -mq <queue_name>;
changing scheduler configuration: qconf -msconf and changing
complexes: qconf -mc. Replace -m by -s and you’ll see current
values (you’ll see them with -m, too, but then you can also edit
them; with -s you cannot).
Further reading regarding the SGE configuration is in
queue_conf, sge_priority and sched_conf manpages. There is
also complex.5 manpage, but you need to point man directly to it
(or change your MANPATH) since there is another complex.5,
which is earlier in MANPATH and decsribes the standard C library
complex variables. :) SGE’s complex.5 is at
/opt/gridengine/man/man5/complex.5.


	Installing SGE 6.0u3

