
Basics of public key cryptography

Big numbers are nice for public key cryptography

based on number theory and the fact that factoring a product of
two primes is an np problem

given two primes p, q, the time required to factorise pq is
proportional to eN , where N is number of digits in pq (roughly
N = log pq).

in public key cryptography, we generate primes p and q, who
constitute our secret key, the public key is pq

public key can be freely distributed - it takes too long to figure out
p and q from it

secret key still needs to be kept secret but it is never distributed
like secret keys of shared secret systems (i.e. ordinary single key
crypto)



Basics of public key cryptography

Big numbers are nice for public key cryptography
based on number theory and the fact that factoring a product of
two primes is an np problem

given two primes p, q, the time required to factorise pq is
proportional to eN , where N is number of digits in pq (roughly
N = log pq).

in public key cryptography, we generate primes p and q, who
constitute our secret key, the public key is pq

public key can be freely distributed - it takes too long to figure out
p and q from it

secret key still needs to be kept secret but it is never distributed
like secret keys of shared secret systems (i.e. ordinary single key
crypto)



Basics of public key cryptography

Big numbers are nice for public key cryptography
based on number theory and the fact that factoring a product of
two primes is an np problem

given two primes p, q, the time required to factorise pq is
proportional to eN , where N is number of digits in pq (roughly
N = log pq).

in public key cryptography, we generate primes p and q, who
constitute our secret key, the public key is pq

public key can be freely distributed - it takes too long to figure out
p and q from it

secret key still needs to be kept secret but it is never distributed
like secret keys of shared secret systems (i.e. ordinary single key
crypto)



Basics of public key cryptography

Big numbers are nice for public key cryptography
based on number theory and the fact that factoring a product of
two primes is an np problem

given two primes p, q, the time required to factorise pq is
proportional to eN , where N is number of digits in pq (roughly
N = log pq).

in public key cryptography, we generate primes p and q, who
constitute our secret key, the public key is pq

public key can be freely distributed - it takes too long to figure out
p and q from it

secret key still needs to be kept secret but it is never distributed
like secret keys of shared secret systems (i.e. ordinary single key
crypto)



Basics of public key cryptography

Big numbers are nice for public key cryptography
based on number theory and the fact that factoring a product of
two primes is an np problem

given two primes p, q, the time required to factorise pq is
proportional to eN , where N is number of digits in pq (roughly
N = log pq).

in public key cryptography, we generate primes p and q, who
constitute our secret key, the public key is pq

public key can be freely distributed - it takes too long to figure out
p and q from it

secret key still needs to be kept secret but it is never distributed
like secret keys of shared secret systems (i.e. ordinary single key
crypto)



Basics of public key cryptography

Big numbers are nice for public key cryptography
based on number theory and the fact that factoring a product of
two primes is an np problem

given two primes p, q, the time required to factorise pq is
proportional to eN , where N is number of digits in pq (roughly
N = log pq).

in public key cryptography, we generate primes p and q, who
constitute our secret key, the public key is pq

public key can be freely distributed - it takes too long to figure out
p and q from it

secret key still needs to be kept secret but it is never distributed
like secret keys of shared secret systems (i.e. ordinary single key
crypto)



Key security

Secret key is you

secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable

hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable

hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to

some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable

hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this

even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable

hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable

hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable

hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable
hard disc failures

fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable
hard disc failures
fires

keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable
hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable
hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Key security

Secret key is you
secret key must be kept safe from others

preferably NOT on a machine someone else has root access to
some work-related keys an exception to this
even personal work-related keys may be exceptions

secret key must not be lost - it is irreplaceable
hard disc failures
fires
keep a copy safe

key exchange only concerns publicly available data - no need to
fear eavesdroppers

eavesdroppers replaced by men-in-the-middle



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity

you never answer yes to these
if you do, you have no security what so ever
it is easy to spoof host authenticity if you answer “yes” to
either of these
using public key cryptography to authenticate the user as
well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity
everyone’s probably seen this

you never answer yes to these
if you do, you have no security what so ever
it is easy to spoof host authenticity if you answer “yes” to
either of these
using public key cryptography to authenticate the user as
well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity
everyone’s probably seen this
The authenticity of host ’purnukka.ath.cx (82.203.129.58)’ can’t be established.
DSA key fingerprint is 39:fb:35:c5:b4:87:35:d8:01:e7:2d:71:e6:5a:98:73.
Are you sure you want to continue connecting (yes/no)?

you never answer yes to these
if you do, you have no security what so ever
it is easy to spoof host authenticity if you answer “yes” to
either of these
using public key cryptography to authenticate the user as
well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity
everyone’s probably seen this
The authenticity of host ’purnukka.ath.cx (82.203.129.58)’ can’t be established.
DSA key fingerprint is 39:fb:35:c5:b4:87:35:d8:01:e7:2d:71:e6:5a:98:73.
Are you sure you want to continue connecting (yes/no)?

and this

you never answer yes to these
if you do, you have no security what so ever
it is easy to spoof host authenticity if you answer “yes” to
either of these
using public key cryptography to authenticate the user as
well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity
everyone’s probably seen this
The authenticity of host ’purnukka.ath.cx (82.203.129.58)’ can’t be established.
DSA key fingerprint is 39:fb:35:c5:b4:87:35:d8:01:e7:2d:71:e6:5a:98:73.
Are you sure you want to continue connecting (yes/no)?

and this
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA1 host key has just been changed.
The fingerprint for the RSA1 key sent by the remote host is
28:7f:f3:68:6a:84:8e:61:28:e9:55:8d:cc:a5:12:8b.
Please contact your system administrator.

you never answer yes to these

if you do, you have no security what so ever

it is easy to spoof host authenticity if you answer “yes” to either of these

using public key cryptography to authenticate the user as well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity
you never answer yes to these

if you do, you have no security what so ever
it is easy to spoof host authenticity if you answer “yes” to
either of these
using public key cryptography to authenticate the user as
well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity
you never answer yes to these
if you do, you have no security what so ever

it is easy to spoof host authenticity if you answer “yes” to
either of these
using public key cryptography to authenticate the user as
well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity
you never answer yes to these
if you do, you have no security what so ever
it is easy to spoof host authenticity if you answer “yes” to
either of these

using public key cryptography to authenticate the user as
well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

ssh
ssh uses public key cryptography to ensure host identity
you never answer yes to these
if you do, you have no security what so ever
it is easy to spoof host authenticity if you answer “yes” to
either of these
using public key cryptography to authenticate the user as
well will alleviate the problem



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

GnuPG

GnuPG uses public key cryptography to digitally sign or
encrypt messages
key trust and authenticity must be maintained
getting key from a keyserver is not trustworthy
the key you get is not necessarily authentic either



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

GnuPG
GnuPG uses public key cryptography to digitally sign or
encrypt messages

key trust and authenticity must be maintained
getting key from a keyserver is not trustworthy
the key you get is not necessarily authentic either



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

GnuPG
GnuPG uses public key cryptography to digitally sign or
encrypt messages
key trust and authenticity must be maintained

getting key from a keyserver is not trustworthy
the key you get is not necessarily authentic either



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

GnuPG
GnuPG uses public key cryptography to digitally sign or
encrypt messages
key trust and authenticity must be maintained
getting key from a keyserver is not trustworthy

the key you get is not necessarily authentic either



Men in the middle - key exchange scenarios

These are the point of failure in public key systems

GnuPG
GnuPG uses public key cryptography to digitally sign or
encrypt messages
key trust and authenticity must be maintained
getting key from a keyserver is not trustworthy
the key you get is not necessarily authentic either



Web of Trust - or How to defend against the Man in the
Middle

foo

1 only obtain public keys first-hand

directly from the person
directly from the console-screen of the sshd host

2 build a Web of Trust

obtain signed keys from trusted parties
assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



Web of Trust - or How to defend against the Man in the
Middle

foo
1 only obtain public keys first-hand

directly from the person
directly from the console-screen of the sshd host

2 build a Web of Trust

obtain signed keys from trusted parties
assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



Web of Trust - or How to defend against the Man in the
Middle

foo
1 only obtain public keys first-hand

directly from the person

directly from the console-screen of the sshd host
2 build a Web of Trust

obtain signed keys from trusted parties
assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



Web of Trust - or How to defend against the Man in the
Middle

foo
1 only obtain public keys first-hand

directly from the person
directly from the console-screen of the sshd host

2 build a Web of Trust

obtain signed keys from trusted parties
assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



Web of Trust - or How to defend against the Man in the
Middle

foo
1 only obtain public keys first-hand

directly from the person
directly from the console-screen of the sshd host

2 build a Web of Trust

obtain signed keys from trusted parties
assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



Web of Trust - or How to defend against the Man in the
Middle

foo
1 only obtain public keys first-hand

directly from the person
directly from the console-screen of the sshd host

2 build a Web of Trust
obtain signed keys from trusted parties

assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



Web of Trust - or How to defend against the Man in the
Middle

foo
1 only obtain public keys first-hand

directly from the person
directly from the console-screen of the sshd host

2 build a Web of Trust
obtain signed keys from trusted parties
assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



Web of Trust - or How to defend against the Man in the
Middle

foo
1 only obtain public keys first-hand

directly from the person
directly from the console-screen of the sshd host

2 build a Web of Trust
obtain signed keys from trusted parties
assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



Web of Trust - or How to defend against the Man in the
Middle

foo
1 only obtain public keys first-hand

directly from the person
directly from the console-screen of the sshd host

2 build a Web of Trust
obtain signed keys from trusted parties
assign different trust levels for diffrent purposes, keys, persons

at least GnuPG can do this

always check these signatures



GnuPG use

Main commands in GnuPG

create your own private-public -keypair:

gpg -gen-key

sign a message file:

gpg -sign [filename]

verify the signature:

gpg -verify [filename]

encrypt a message file:

gpg -encrypt [filename]

Note: this only encrypts the symmetric-cryptosystem key using
public-key cryptography. The actual file is crypted using a
single-key-system. This is simply a performance issue: using
integers of the size of 22048 tends to be a bit slow.



GnuPG use

Main commands in GnuPG
create your own private-public -keypair:

gpg -gen-key

sign a message file:

gpg -sign [filename]

verify the signature:

gpg -verify [filename]

encrypt a message file:

gpg -encrypt [filename]

Note: this only encrypts the symmetric-cryptosystem key using
public-key cryptography. The actual file is crypted using a
single-key-system. This is simply a performance issue: using
integers of the size of 22048 tends to be a bit slow.



GnuPG use

Main commands in GnuPG
create your own private-public -keypair:

gpg -gen-key

sign a message file:

gpg -sign [filename]

verify the signature:

gpg -verify [filename]

encrypt a message file:

gpg -encrypt [filename]

Note: this only encrypts the symmetric-cryptosystem key using
public-key cryptography. The actual file is crypted using a
single-key-system. This is simply a performance issue: using
integers of the size of 22048 tends to be a bit slow.



GnuPG use

Main commands in GnuPG
create your own private-public -keypair:

gpg -gen-key

sign a message file:

gpg -sign [filename]

verify the signature:

gpg -verify [filename]

encrypt a message file:

gpg -encrypt [filename]

Note: this only encrypts the symmetric-cryptosystem key using
public-key cryptography. The actual file is crypted using a
single-key-system. This is simply a performance issue: using
integers of the size of 22048 tends to be a bit slow.



GnuPG use

Main commands in GnuPG
create your own private-public -keypair:

gpg -gen-key

sign a message file:

gpg -sign [filename]

verify the signature:

gpg -verify [filename]

encrypt a message file:

gpg -encrypt [filename]

Note: this only encrypts the symmetric-cryptosystem key using
public-key cryptography. The actual file is crypted using a
single-key-system. This is simply a performance issue: using
integers of the size of 22048 tends to be a bit slow.



GnuPG use

Main commands in GnuPG
decrypt a message file:

gpg -decrypt [filename]

import keys from file:

gpg -import [filename]

import keys from default keyserver:

gpg -recv-keys key-ids

list your secret key(s) fingerprints:

gpg -fingerprint -list-secret-keys



GnuPG use

Main commands in GnuPG
decrypt a message file:

gpg -decrypt [filename]

import keys from file:

gpg -import [filename]

import keys from default keyserver:

gpg -recv-keys key-ids

list your secret key(s) fingerprints:

gpg -fingerprint -list-secret-keys



GnuPG use

Main commands in GnuPG
decrypt a message file:

gpg -decrypt [filename]

import keys from file:

gpg -import [filename]

import keys from default keyserver:

gpg -recv-keys key-ids

list your secret key(s) fingerprints:

gpg -fingerprint -list-secret-keys



GnuPG use

Main commands in GnuPG
decrypt a message file:

gpg -decrypt [filename]

import keys from file:

gpg -import [filename]

import keys from default keyserver:

gpg -recv-keys key-ids

list your secret key(s) fingerprints:

gpg -fingerprint -list-secret-keys



I am not being paranoid

foo
While I have not met a forged PGP key or seen a Man in the Middle
attack with PGP systems, I have seen an attempted Man in the Middle
attack with ssh servers.
I even staged my own once to demonstrate! Took about 10 minutes to
build the system.


