
NAG Fortran Library

Thread Safety

1 Multithreaded Applications and Thread Safety

A thread is a basic entity to which an operating system allocates CPU time. A thread has its own registers,
stack and process resources. Threads provide a convenient way of allowing an application to maximise its
usage of CPU resources in a system, especially in a multiple processor configuration. A routine is termed
‘thread safe’ if it can be called safely from two or more concurrently running threads.

The remainder of this document describes thread safety within the context of the NAG Fortran Library and
provides guidelines for calling Library routines from multithreaded applications.

2 Thread Safety and the NAG Fortran Library

It is essential that you refer to the Users’ Note for details of whether the Library has been compiled in a
manner that facilitates the use of multiple threads. Also, your local site may have decided only to install a
Library of thread safe routines; please contact your site installer for details of the installation.

2.1 Thread Safe Constructs

In a Fortran 77 context the constructs that prohibit thread safety are, potentially, DATA, SAVE, COMMON
and EQUIVALENCE. This is because such constructs define data that may be shared by different threads,
perhaps leading to unwanted interactions between them: for example, the possibility that one thread may
be modifying the contents of a COMMON block at the same time as another thread is reading it. You are
therefore advised to use such constructs with great care and to avoid their use wherever possible within
multithreaded applications.

The NAG Fortran Library has addressed these issues by

eliminating unsafe constructs wherever possible;

providing equivalent thread safe routines with the same functionality where complete removal of
unsafe constructs would affect interface design. Two approaches have been taken to provide thread
safe equivalents; see Section 2.2 for further details.

2.2 Library Routines with Thread Safe Equivalents

In the NAG Fortran Library there are sometimes pairs of routines which share the same root name, for
example, the routines D03PCF and D03PCA. Each routine in the pair has exactly the same functionality,
except that one of them has additional parameters in order to make it safe for use in multithreaded
applications. The routine that is safe for use in multithreaded applications has a different last character in
the name in place of the usual character (typically ’A’ instead of ’F’). Such pairs are documented via one
routine document. If the pair of routines contain a routine argument in their interface then the routine with
additional parameters will have parameter arrays that enable you to pass information to the routine
argument without the need for COMMON blocks. In some cases the routine with additional parameters
may need to be initialised by a separate initialisation routine; this requirement will be clearly documented.

2.3 Routines with Routine Arguments

Some Library routines require you to supply a routine and to pass the name of the routine as an argument
in the call to the Library routine. For many of these Library routines, the supplied routine interface
includes array arguments specifically for you to pass information to the supplied routine. However, there
remain some Library routines for which you may need to supply your provided routine with more
information than can be given via the interface argument list. In such circumstances it is usual to define a
COMMON block containing the required data in the supplied routine (and also in the calling program). It
is safe to do this only if no data referenced in the defined COMMON block is updated within the supplied
routine (thus avoiding the possibility of simultaneous modification by different threads). Where separate
calls are made to a Library routine by different threads and these calls require different data sets to be

Introduction Thread Safety

[NP3657/21] SAFETY.1



passed through COMMON blocks to user-supplied routines, these routines and the COMMON blocks
defined within them should have different names.

You are advised to check, in the relevant chapter introduction, whether the Library routines you intend to
call have equivalent reverse communication interfaces. These have been designed specifically for problems
where user-supplied routine interfaces are not flexible enough for a given problem, and their use should
eliminate the need to provide data through COMMON blocks.

2.4 Input/Output

The Library contains routines for setting the current error and advisory message unit numbers (X04AAF
and X04ABF). These routines use the SAVE statement to retain the values of the current unit numbers
between calls. It is therefore not advisable for different threads of a multithreaded program to set the
message unit numbers to different values. A consequence of this is that error or advisory messages output
simultaneously may become garbled, and in any event there is no indication of which thread produces
which message. You are therefore advised always to select the ’soft failure’ mechanism without any error
message (IFAIL ¼ þ1, see Section 2.3 of the Essential Introduction) on entry to each NAG routine called
from a multithreaded application; it is then essential that the value of IFAIL be tested on return to the
application.

A related problem is that of multiple threads writing to or reading from files. You are advised to make
different threads use different unit numbers for opening files and to give these files different names
(perhaps by appending an index number to the file basename). The only alternative to this is for you to
protect each write to a file or unit number; for example, by putting each WRITE statement in a critical
region.

2.5 Implementation Issues

In some implementations of the NAG Library calls are made to vendor BLAS and/or LAPACK Library
routines. Where appropriate, NAG perform tests to ensure that these calls are behaving correctly on
multiple threads, but cannot guarantee the thread safety of the vendor BLAS and LAPACK routines. You
are advised to refer to the Users’ Note for details of whether the Library is to be linked with vendor BLAS
and/or LAPACK Libraries.

Thread Safety NAG Fortran Library Manual

SAFETY.2 (last) [NP3657/21]


	SAFETY
	1 Multithreaded Applications and Thread Safety
	2 Thread Safety and the NAG Fortran Library
	2.1 Thread Safe Constructs
	2.2 Library Routines with Thread Safe Equivalents
	2.3 Routines with Routine Arguments
	2.4 Input/Output
	2.5 Implementation Issues


	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



