Introduction

Note: this document is essential reading for any prospective user of the Library.

Contents

1

[NP3657/21]

The Library and its Documentation

1.1
1.2
1.3
1.4
L5
1.6
1.7

Using the Library

2.1
2.2
23
24
2.5
2.6
2.7
2.8

Using the Documentation

3.1
3.2
33

34
3.5
3.6

Support from NAG
Background to NAG

References

NAG Fortran Library

Essential Introduction

Structure of the Library
Structure of the Documentation
Marks of the Library
Implementations of the Library
Precision of the Library
Library Identification
Fortran Language Standards

General Advice
Programming Advice
Error Handling and the Parameter IFAIL
Input/output in the Library
Auxiliary Routines
Dynamic Memory Application
Thread Safety
Calling the Library from Other Languages

Using the Manual
Structure of Routine Documents
Specification of Parameters

3.3.1 Classification of parameters
3.3.2 Constraints and suggested values
3.3.3 Array parameters

Implementation-dependent Information
Example Programs and Results
Summary for New Users

Essential Introduction

ESSINT 1

Essential Introduction NAG Fortran Library Manual

1 The Library and its Documentation

1.1 Structure of the Library

The NAG Fortran Library is a comprehensive collection of routines for the solution of numerical and
statistical problems. The word ‘routine’ is used to denote ‘subroutine’ or ‘function’.

The Library is divided into chapters, each devoted to a branch of numerical analysis or statistics. Each
chapter has a three-character name and a title, e.g.,

D01 — Quadrature

Exceptionally, Chapters H and S have one-character names. (The chapters and their names are based on
the ACM modified SHARE classification index (see ACM (1960-1976)).)

All documented routines in the Library have six-character names, beginning with the characters of the
chapter name, e.g.,

DO1AJF

Note that the second and third characters are digits, not letters; e.g., 0 is the digit zero, not the letter O.
The last letter of each routine name almost always appears as ‘F’ in the documentation, but may be
changed to ‘E’ in some single precision implementations (see Section 1.5). Chapters C05, D03 and E04
have some routines whose last letter is ‘A’ rather than ‘F’ (‘B’ in some single precision implementations).
An ‘A’ version is always paired with an ‘F’ routine, the ‘A’ version being safe to use in a multithreaded
environment, but otherwise having identical functionality to the ‘F’ version.

Chapter FO6 (Linear Algebra Support Routines) contains all the Basic Linear Algebra Subprograms,
BLAS, with NAG-style names as well as with the actual BLAS names, e.g., FO6PAF (DGEMV). The
names in brackets are the equivalent double precision BLAS names. Chapter FO7 (Linear Equations
(LAPACK)) and Chapter FO8 (Least-squares and Eigenvalue Problems (LAPACK)) contain routines
derived from the LAPACK project. Like the BLAS, these routines have NAG-style names as well as
LAPACK names, e.g., FO7TADF (DGETRF). Details regarding these alternate names can be found in the
relevant Chapter Introductions.

In order to take full advantage of machine-specific versions of BLAS and LAPACK routines provided by
some computer hardware vendors, you are encouraged to use the BLAS and LAPACK names (e.g.,
DGEMYV and DGETRF) rather than the corresponding NAG-style names (e.g., FO6PAF and FO7ADF)
wherever possible in your programs.

1.2 Structure of the Documentation

The NAG Fortran Library Manual is the principal documentation for the NAG Fortran Library. It has
the same chapter structure as the Library: each chapter of routines in the Library has a corresponding
chapter (of the same name) in the Manual. The chapters occur in alphanumeric order. General
introductory documents are placed in Volume 1 of the Manual.

Each chapter consists of the following documents:
Chapter Contents, e.g., Contents — D01;
Chapter Introduction, e.g., Introduction — DO1;
Routine Documents, one for each documented routine in the chapter.

A routine document has the same name as the routine which it describes. Within each chapter, routine
documents occur in alphanumeric order. For those chapters that have both ‘A’ and ‘F’ versions of a
routine, the routine descriptions are combined into one routine document. Exceptionally, some chapters
(Chapters X01 and X02) do not have individual routine documents; instead, all the routines are described
together in the Chapter Introduction.

Currently NAG provides documentation in the form of PDF files accompanied by an HTML index.
Introductory material is provided in both PDF and HTML but the Keyword Index and GAMS
Classification Index are provided in HTML only. It is anticipated that future releases will provide HTML
files (taking advantage of technology that is currently being developed, e.g., MathML) for the full manual

ESSINT2 [NP3657/21]

Introduction Essential Introduction

and fully linked PDF files for all but the Keyword Index and GAMS Classification Index. The most up-to-
date version of the documentation is accessible via the NAG Web site (see Section 4).

1.3 Marks of the Library

Periodically a new Mark of the NAG Fortran Library is released: new routines are added, corrections and/
or improvements are made to existing routines; occasionally routines are withdrawn if they have been
superseded by improved routines.

At each Mark, the documentation of the Library is updated. You must make sure that your documentation
has been updated to the same Mark as the Library software that you are using.

Marks are numbered, e.g., 4, 5, 6. The current Mark is Mark 21.

1.4 Implementations of the Library

The NAG Fortran Library is available on many different computer systems. For each distinct system, an
implementation of the Library is prepared by NAG, e.g., the Sun Solaris 32-bit implementation. The
implementation is distributed to sites as a tested compiled library.

An implementation is usually specific to a range of machines (e.g., the Sparc systems); it may also be
specific to a particular operating system, Fortran compiler, or compiler option (such as scalar or vector
mode or thread safe).

Essentially the same facilities are provided in all implementations of the Library, but, because of
differences in arithmetic behaviour and in the compilation system, routines cannot be expected to give
identical results on different systems, especially for sensitive numerical problems.

The documentation supports all implementations of the Library, with the help of a few simple conventions,
and a small amount of implementation-dependent information, which is published in a separate Users’
Note for each implementation (see Section 3.4).

1.5 Precision of the Library
The NAG Fortran Library may be implemented in double precision or single precision.
On most systems only one precision of the Library is available (double precision).

Double precision routines have names ending in ‘F’ (or ‘A”) (as in the documentation), and single precision
routines have names ending in ‘E’ (or ‘B’). For example,

DO1AJF is a routine in a double precision implementation;
DO1AJE is the corresponding routine in a single precision implementation.

Whatever the precision, INTEGER variables (and elements of arrays) always occupy one numeric storage
unit, that is the Library is not implemented using non-standard integer storage (see ANSI (1978)), e.g.,
INTEGER*2.

1.6 Library Identification

You must know which implementation, which precision and which Mark of the Library you are using
or intend to use. To find out which implementation, precision and Mark of the Library is available at your
site, you can run a program which calls the NAG Library routine AOOAAF (or AOOAAE in most single
precision implementations).

The program could be:

EXTERNAL AOOAAF
CALL AOOAAF ()
END

[NP3657/21] ESSINT 3

Essential Introduction NAG Fortran Library Manual

An example of the output is:

x Start of NAG Library implementation details #*#**

Implementation title: IA32, Linux, Intel Fortran
Precision: FORTRAN double precision
Product Code: FLLUX21DC
Mark: 21

x End of NAG Library implementation details #*#*=*

1.7 Fortran Language Standards

All routines in the Library conform to the ISO Fortran 95 Standard (ISO (1997)), except for the use of a
double precision complex data type (usually COMPLEX*16) in some routines in Fortran 77 compiled
double precision implementations of the Library — there is no provision for this data type in the old ANSI
Standard Fortran 77 (ANSI (1978)).

Many of the routines in the Library were originally written to conform to the earlier Fortran 66 standard
(ANSI (1966)), and their calling sequences may contain a few parameters which are not strictly necessary
in Fortran 77.

2 Using the Library
2.1 General Advice

A NAG Fortran Library routine cannot be guaranteed to return meaningful results irrespective of the data
supplied to it. Care and thought must be exercised in:

(a) formulating the problem;
(b) programming the use of library routines;
(c) assessing the significance of the results.

The Foreword to the Manual provides some further discussion of points (a) and (c); the remainder of
Section 2 is concerned with (b).

2.2 Programming Advice

The NAG Fortran Library and its documentation are designed on the assumption that you know how to
write a calling program in Fortran.

When programming a call to a routine, read the routine document carefully, especially the description of
the Parameters. This states clearly which parameters must have values assigned to them on entry to the
routine, and which return useful values on exit. See Section 3.3 for further guidance.

The most common types of programming error in using the Library are:
incorrect parameters in a call to a Library routine;

calling a double precision implementation of the Library from a single precision program, or vice-
versa.

Therefore if a call to a Library routine results in an unexpected error message from the system (or possibly
from within the Library), check the following:

Has the NAG routine been called with the correct number of parameters?
Do the parameters all have the correct type?
Have all array parameters been dimensioned correctly?

Is your program in the same precision as the NAG Library routines to which your program is
being linked?

Have NAG routine names been modified — if necessary — as described in Sections 1.5 and 2.5?

ESSINT 4 [NP3657/21]

Introduction Essential Introduction

Avoid the use of NAG-type names for your own program units or COMMON blocks: in general, do not
use names which contain a three-character NAG chapter name embedded in them; they may clash with the
names of an auxiliary routine or COMMON block used by the NAG Library.

2.3 Error Handling and the Parameter IFAIL

NAG Fortran Library routines may detect various kinds of error, failure or warning conditions. Such
conditions are handled in a systematic way by the Library. They fall roughly into three classes:

(i) an invalid value of a parameter on entry to a routine;

(1) a numerical failure during computation (e.g., approximate singularity of a matrix, failure of an
iteration to converge);

(iii) a warning that, although the computation has been completed, the results cannot be guaranteed to be
completely reliable.

All three classes are handled in the same way by the Library, and are all referred to here simply as ‘errors’.

The error-handling mechanism uses the parameter IFAIL, which occurs as the last parameter in the calling
sequence of most NAG Library routines. IFAIL serves two purposes:

(1) it allows users to specify what action a Library routine should take if it detects an error;

(i) it reports the outcome of a call to a Library routine, either ‘success’ (IFAIL =0) or ‘failure’
(IFAIL # 0, with different values indicating different reasons for the failure, as explained in Section 6
of the routine documents).

For the first purpose IFAIL must be assigned a value before calling the routine; since IFAIL is reset by the
routine, it must be passed as a variable, not as an integer constant. Allowed values on entry are:

IFAIL = 0: an error message is output, and execution is terminated (‘hard failure’);
IFAIL = +1: execution continues without any error message;
IFAIL = —1: an error message is output, and execution continues.

The settings IFAIL = +1 are referred to as ‘soft failure’.

The safest choice is to set IFAIL to 0, but this is not always convenient: some routines return useful results
even though a failure (in some cases merely a warning) is indicated. However, if IFAIL is set to =1 on
entry, it is essential for the program to test its value on exit from the routine, and to take appropriate
action.

The specification of IFAIL in Section 5 of a routine document suggests a suitable setting of IFAIL for that
routine.

For a full description of the error-handling mechanism, see the P01 Chapter Introduction.

Routines in Chapters FO7 and FO8 do mnot use the usual error handling mechanism; in order to preserve
complete compatibility with LAPACK software, they have a diagnostic output parameter INFO which need
not be set before entry. See the relevant Chapter Introduction for further details.

Some routines in Chapter FO6 output an error message if an illegal input parameter is detected, then
terminate program execution immediately. See the FO6 Chapter Introduction for further details.

2.4 Input/output in the Library

Most NAG Library routines perform no output to an external file, except possibly to output an error
message. All error messages are written to a logical error message unit. This unit number (which is set
by default to 6 in most implementations) can be changed by calling the Library routine X04AAF.

Some NAG Library routines may optionally output their final results, or intermediate results to monitor the
course of computation. In general, output other than error messages is written to a logical advisory
message unit. This unit number (which is also set by default to 6 in most implementations) can be
changed by calling the Library routine X04ABF. Although it is logically distinct from the error message
unit, in practice the two unit numbers may be the same. A few routines in Chapter E04 allow this unit
number to be specified directly as an option.

[NP3657/21] ESSINT.5

Essential Introduction NAG Fortran Library Manual

All output from the Library is formatted.

There are only a few Library routines which perform input from an external file. These examples occur in
Chapters E04 and H. The unit number of the external file is a parameter to the routine, and all input is
formatted.

You must ensure that the relevant Fortran unit numbers are associated with the desired external files, either
by an OPEN statement in your calling program, or by operating system commands.

2.5 Aauxiliary Routines

In addition to those Library routines which are documented and are intended to be called by users, the
Library also contains many auxiliary routines. Details of all the auxiliary routines which are called directly
or indirectly by any documented NAG Library routine are supplied to sites in machine-readable form with
the Library software.

In general, you need not be concerned with them at all, although you may be made aware of their
existence if, for example, you examine a memory map of an executable program which calls NAG
routines. The only exception is that when calling some NAG Library routines you may be required or
allowed to supply the name of an auxiliary routine from the NAG Library as an external procedure
parameter. The routine documents give the necessary details. In such cases, you only need to supply the
name of the routine; you never need to know details of its parameter list.

NAG auxiliary routines have names which are similar to the name of the documented routine(s) to which
they are related, but with last letter ‘Z’, “Y’, and so on, e.g.,

DO1BAZ is an auxiliary routine called by DO1BAF.

In a single precision implementation in which the names of documented routines end in ‘E’, the names of
auxiliary routines have their first three and last three characters interchanged, e.g.,

BAZDOL1 is an auxiliary routine (corresponding to DO1BAZ) called by DO1BAE.

A few chapters contain auxiliary routines whose names are obtained by adding 50 to the second and third
characters of the chapter name. For instance, Chapter EO4 has an auxiliary routine with the name
E54UCZ.

2.6 Dynamic Memory Application

Some NAG Library routines perform dynamic memory allocation to simplify their interfaces. Where
possible, the amount of memory allocated by a routine will be given in the routine document (usually as a
function of routine parameters). All memory allocated by NAG routines is deallocated before exit.

In the case where a routine detects a failure to dynamically allocate sufficient memory, the routine will set
an error condition and return IFAIL = —999.

2.7 Thread Safety

Some implementations of the Library facilitate the use of threads; that is, you can call routines from the
Library from within a multithreaded application. Fully thread safe libraries are provided for several
platforms — for more information please contact your local Response Centre (see Section 4). See the
Thread Safety document for more detailed guidance on using the Library in a multithreaded context. You
may also need to refer to the Users’ Note for details of whether your implementation of the Library has
been compiled in a manner that facilitates the use of threads.

Note that in some implementations, the Library is linked with one or more vendor libraries to provide, for
example, efficient BLAS routines. NAG cannot guarantee that any such vendor library is thread safe.

2.8 Calling the Library from Other Languages

In general the NAG Fortran Library can be called from other computer languages (such as C and Visual
Basic) provided that appropriate mappings exist between their data types.

ESSINT.6 [NP3657/21]

Introduction Essential Introduction

NAG has produced C Header Files which comprise of a set of header files indicating the match between C
and Fortran data types for various compilers, documentation and examples. The documentation and
examples are available from the NAG Web sites (see Section 4).

The Dynamic Link Library (DLL) version can be called in a straightforward manner from a number of
languages and environments, e.g., Visual Basic, Visual Basic for Applications (Excel), Delphi, C and C++.
Guidance on this is provided as part of NAG Fortran Library DLLs. Further details can be found on the
NAG Web sites.

3 Using the Documentation
3.1 Using the Manual

The Manual is designed to serve the following routines:
to give background information about different areas of numerical and statistical computation;

to advise on the choice of the most suitable NAG Library routine or routines to solve a particular
problem;

to give all the information needed to call a NAG Library routine correctly from a Fortran program,
and to assess the results.

At the beginning of the Manual are some general introductory documents which provide some background
and additional information. The Library Contents (a structured list of routines in the Library, by chapter)
may help you to find the chapter, and possibly the routine, which you need to solve your problem. Online
documentation provides you with a fully linked HTML Keyword Index (a keyword index to chapters and
routines) and GAMS Classification Index (a list of NAG routines classified according to the GAMS
scheme).

Having found a likely chapter or routine, you should read the corresponding Chapter Introduction, which
gives background information about that area of numerical computation, and recommendations on the
choice of a routine, including indexes, tables or decision trees.

When you have chosen a routine, you must consult the routine document. Each routine document is
essentially self-contained (it may, however, contain references to related documents). It includes a
description of the method, detailed specifications of each parameter, explanations of each error exit,
remarks on accuracy, and (in most cases) an example program to illustrate the use of the routine.

3.2 Structure of Routine Documents

All routine documents have the same structure, consisting of nine numbered sections:
Purpose

Specification

Description

References

Parameters (see Section 3.3 below)

Error Indicators and Warnings

Accuracy

Further Comments

e ® N AV AW D=

Example (see Section 3.5 below)

In a few documents (notably Chapter E04) there are a further three sections:
10. Algorithmic Details

11. Optional Parameters

12. Description of Monitoring Information

[NP3657/21] ESSINT.7

Essential Introduction NAG Fortran Library Manual

3.3 Specification of Parameters

Section 5 of each routine document contains the specification of the parameters, in the order of their
appearance in the parameter list.

3.3.1 Classification of parameters
Parameters are classified as follows.

Input: you must assign values to these parameters on or before entry to the routine, and these values are
unchanged on exit from the routine.

Output: you need not assign values to these parameters on or before entry to the routine; the routine may
assign values to them.

Input/Output: you must assign values to these parameters on or before entry to the routine, and the routine
may then change these values.

Workspace: array parameters which are used as workspace by the routine. You must supply arrays of the
correct type and dimension. In general, you need not be concerned with their contents.

Communication Array: array parameters which are used to communicate data from one subroutine call to
another.

External Procedure: a subroutine or routine which must be supplied (e.g., to evaluate an integrand or to
print intermediate output). Usually it must be supplied as part of your calling program, in which case its
specification includes full details of its parameter list and specifications of its parameters (all enclosed in a
box). Its parameters are classified in the same way as those of the Library routine, but because you must
write the procedure rather than call it, the significance of the classification is different.

Input: values may be supplied on entry, which your procedure must not change.
Output. you may or must assign values to these parameters before exit from your procedure.

Input/Output: values may be supplied on entry, and you may or must assign values to them before
exit from your procedure.

Occasionally, as mentioned in Section 2.5, the procedure can be supplied from the NAG Library, and then
you only need to know its name.

User Workspace: array parameters which are passed by the Library routine to an external procedure
parameter. They are not used by the routine, but you may use them to pass information between your
calling program and the external procedure.

Dummy: a simple variable which is not used by the routine. A variable or constant of the correct type must
be supplied, but its value need not be set. (A dummy parameter is usually a parameter which was required
by an earlier version of the routine and is retained in the parameter list for compatibility.)

3.3.2 Constraints and suggested values

The word ‘Constraint.” or ‘Constraints:’ in the specification of an Input parameter introduces a statement
of the range of valid values for that parameter, e.g.,

Constraint: N > 0.

If the routine is called with an invalid value for the parameter (e.g., N = 0), the routine will usually take an
error exit, returning a non-zero value of IFAIL (see Section 2.3).

In newer routine documents, constraints on parameters of type CHARACTER only list upper case
alphabetic characters, e.g.,

Constraint. CHECK = 'N'.
In practice, all routines with CHARACTER parameters will permit the use of lower case characters.

The phrase ‘Suggested Value:’ introduces a suggestion for a reasonable initial setting for an Input
parameter (e.g., accuracy or maximum number of iterations) in case you are unsure what value to use; you
should be prepared to use a different setting if the suggested value turns out to be unsuitable for your
problem.

ESSINT.8 [NP3657/21]

Introduction Essential Introduction

3.3.3 Array parameters

Most array parameters have dimensions which depend on the size of the problem. In Fortran terminology
they have ‘adjustable dimensions’: the dimensions occurring in their declarations are integer variables
which are also parameters of the Library routine.

For example, a Library routine might have the specification:

SUBROUTINE <name> (M, N, A, B, LDB)
INTEGER M, N, A(N), B(LDB,N), LDB

For a one-dimensional array parameter, such as A in this example, the specification would begin

A(N) — INTEGER array

You must ensure that the dimension of the array, as declared in your calling (sub)program, is at least as
large as the value you supply for N. It may be larger, but the routine uses only the first N elements.

For a two-dimensional array parameter, such as B in the example, the specification might be
B(LDB,N) — INTEGER array
On entry: the m by n matrix B.

and the parameter LDB might be described as follows:
LDB — INTEGER

On entry: the first dimension of the array B as declared in the (sub)program from which <name> is
called.

Constraint: LDB > M.

You must supply the first dimension of the array B, as declared in your calling (sub)program, through the
parameter LDB, even though the number of rows actually used by the routine is determined by the
parameter M. You must ensure that the first dimension of the array is at least as large as the value you
supply for M. The extra parameter LDB is needed because Fortran does not allow information about the
dimensions of array parameters to be passed automatically to a routine.

You must also ensure that the second dimension of the array, as declared in your calling (sub)program, is
at least as large as the value you supply for N. It may be larger, but the routine uses only the first N
columns.

A program to call the hypothetical routine used as an example in this section might include the statements:

INTEGER AA(100), BB(100,50)

LDB = 100
M = 80
N = 20

CALL <name>(M,N,AA,BB,LDB)

Fortran 77 requires that the dimensions which occur in array declarations must be greater than zero. Many
NAG routines are designed so that they can be called with a parameter like N in the above example set to
0 (in which case they would usually exit immediately without doing anything). If so, the declarations in
the Library routine would use the ‘assumed size’ array dimension, and would be given as

INTEGER M, N, A(*), B(LDB,*), LDB

However, the original declaration of an array in your calling program must always have constant
dimensions, greater than or equal to 1.

Consult an expert or a textbook on Fortran if you have difficulty in calling NAG routines with array
parameters.

[NP3657/21] ESSINT.9

Essential Introduction NAG Fortran Library Manual

3.4 Implementation-dependent Information

In order to support all implementations of the Library, the Manual has adopted a convention of using bold
italics to distinguish terms which have different interpretations in different implementations.

The most important bold italicised terms are the following; their interpretation depends on whether the
implementation is in single precision or double precision.

double precision means REAL or DOUBLE PRECISION
complex*16 means COMPLEX or COMPLEX*16 (or equivalent)
basic precision means single precision or double precision

additional precision means double precision or quadruple precision

Another important bold italicised term is machine precision, which denotes the relative precision to which
double precision floating-point numbers are stored in the computer, e.g., in an implementation with

approximately 16 decimal digits of precision, machine precision has a value of approximately 10~'°.

The precise value of machine precision is given by the routine X02AJF. Other routines in Chapter X02
return the values of other implementation-dependent constants, such as the overflow threshold, or the
largest representable integer. Refer to the X02 Chapter Introduction for more details.

The bold italicised term block size is used only in Chapters FO7 and FO8. It denotes the block size used by
block algorithms in these chapters. You only need to be aware of its value when it affects the amount of
workspace to be supplied — see the parameters WORK and LWORK of the relevant routine documents and
the Chapter Introduction.

For each implementation of the Library, a separate Users’ Note is published. This is a short document,
revised at each Mark. At most installations it is available in machine-readable form. It gives any
necessary additional information which applies specifically to that implementation, in particular:

the interpretation of bold italicised terms;

the values returned by X02 routines;

the default unit numbers for output (see Section 2.4);

details of name changes for Library routines (see Sections 1.5 and 2.5).

In Chapters F06, FO7 and FO08, where alternate routine names are available for BLAS and LAPACK
derived routines, the alternate name appears in bold italics, for example, dgetrf, which should be
interpreted as either SGETRF (in single precision) or DGETRF (in double precision) in the case of
FO7ADF, which handles real matrices. Similarly, FO7ARF for complex matrices uses zgetrf, which should
be interpreted as either CGETREF (in single precision) or ZGETRF (in double precision).

3.5 Example Programs and Results

The example program in Section 9 of each routine document illustrates a simple call of the routine. The
programs are designed so that they can fairly easily be modified, and so serve as the basis for a simple
program to solve your problem.

The double precision version of the program is provided and this should compile and execute correctly
without modification for double precision implementations.

For each implementation of the Library, NAG distributes the example programs in machine-readable form,
with all necessary modifications already applied. Many sites make the programs accessible to you in this
form. They may also be obtained directly from the NAG Web site.

Note that the results from running the example programs may not be identical in all implementations, and
may not agree exactly with the results in the Manual and which were obtained from a double precision
implementation (with approximately 16 digits of precision).

The Users’ Note for your implementation will mention any special changes which need to be made to the
example programs, and any significant differences in the results.

ESSINT 10 [NP3657/21]

Introduction Essential Introduction

3.6 Summary for New Users

If you are unfamiliar with this Library and are thinking of using a routine from it, please follow these
instructions:

(a) read the whole of this Essential Introduction;

(b) consult the Library Contents list to select an appropriate chapter or routine;

(c) or search through the Keyword Index, GAMS Classification Index or via an online search facility;
(d) read the relevant Chapter Introduction;

(e) choose a routine, and read the routine document. If the routine does not after all meet your needs,
return to step (b), (c) or (d);

(f) read the Users’ Note for your implementation;

(g) consult local documentation, which should be provided by your local support staff, about access to the
Library on your computing system;

(h) obtain an online copy of the example program for the particular routine of interest and experiment
with it.

You should now be in a position to include a call to the routine in a program, and to attempt to compile
and run it. You may of course need to refer back to the relevant documentation in the case of difficulties,
for advice on assessment of results, and so on.

As you become familiar with the Library, some of steps (a) to (h) can be omitted, but it is always essential
to:

be familiar with the Chapter Introduction;
read the routine document;

be aware of the Users’ Note for your implementation.

4 Support from NAG
(a) Contact with NAG

Queries concerning this library should be directed initially to your local Advisory Service. If you have
difficulty in making contact locally, you can contact NAG directly.

(b) NAG Response Centres

The NAG Response Centres are available for general enquiries from all users and also for technical queries
from users with support.

The Response Centres are open during office hours, but contact is possible by fax, email and telephone
(answering machine) at all times. Please see the Users’ Note or the NAG web sites for contact details.

When contacting one of our Response Centres it helps us to deal with you query quickly if you can quote
your NAG user reference and NAG product code.

(c) NAG Web Site

The NAG web site is an information service providing items of interest to users and prospective users of
NAG products and services. The information is regularly updated and reviewed, and includes
implementation availability, descriptions of products, down-loadable software and technical reports. The
NAG web site can be accessed via:

http://www.nag.co.uk,
http://www.nag.com or
http://www.nag.co. jp

[NP3657/21] ESSINT 11

Essential Introduction NAG Fortran Library Manual

5 Background to NAG

Various aspects of the design and development of the NAG Library, and NAG’s technical policies and
organisation are given in Ford (1982), Ford et al. (1979), Ford and Pool (1984), and Hague et al. (1982).

6 References

ACM (1960-1976) Collected algorithms from ACM index by subject to algorithms

ANSI (1966) USA standard Fortran Publication X3.9 American National Standards Institute

ANSI (1978) American National Standard Fortran Publication X3.9 American National Standards Institute
ANSI/IEEE POSIX (1995) POSIX Standard Thread Library ANSI/IEEE POSIX 1003.1¢:1995

Ford B (1982) Transportable numerical software Lecture Notes in Computer Science 142 128-140
Springer—Verlag

Ford B, Bentley J, Du Croz J J and Hague S J (1979) The NAG Library ‘machine’ Sofiw. Pract. Exper. 9
(1) 65-72

Ford B and Pool J C T (1984) The evolving NAG Library service Sources and Development of
Mathematical Sofiware (ed W Cowell) 375-397 Prentice—Hall

Hague S J, Nugent S M and Ford B (1982) Computer-based documentation for the NAG Library Lecture
Notes in Computer Science 142 91-127 Springer—Verlag

ISO (1997) ISO Fortran 95 programming language (ISO/IEC 1539-1:1997)

ISO/IEC (1990) Information technology — Programming Language C Current C Language Standard 1SO/
IEC 9899:1990

Kernighan B W and Ritchie D M (1988) The C Programming Language (2nd Edition) Prentice—Hall

ESSINT 12 (last) [NP3657/21]

	Essential Introduction
	1 The Library and its Documentation
	1.1 Structure of the Library
	1.2 Structure of the Documentation
	1.3 Marks of the Library
	1.4 Implementations of the Library
	1.5 Precision of the Library
	1.6 Library Identification
	1.7 Fortran Language Standards

	2 Using the Library
	2.1 General Advice
	2.2 Programming Advice
	2.3 Error Handling and the Parameter IFAIL
	2.4 Input/output in the Library
	2.5 Auxiliary Routines
	2.6 Dynamic Memory Application
	2.7 Thread Safety
	2.8 Calling the Library from Other Languages

	3 Using the Documentation
	3.1 Using the Manual
	3.2 Structure of Routine Documents
	3.3 Specification of Parameters
	3.3.1 Classification of parameters
	3.3.2 Constraints and suggested values
	3.3.3 Array parameters

	3.4 Implementationependent Information
	3.5 Example Programs and Results
	3.6 Summary for New Users

	4 Support from NAG
	5 Background to NAG
	6 References

	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

