
NAG Fortran Library Chapter Introduction

M01 – Sorting

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

3 Recommendations on Choice and Use of Available Routines 2

4 Index . 3

5 Routines Withdrawn or Scheduled for Withdrawal 4

6 References . 4

M01 – Sorting Introduction – M01

[NP3546/20A] M01.1

1 Scope of the Chapter

This chapter is concerned with sorting numeric or character data. It handles only the simplest types of data
structure and it is concerned only with internal sorting – that is, sorting a set of data which can all be
stored within the program.

Users with large files of data or complicated data structures to be sorted should use a comprehensive
sorting program or package.

2 Background to the Problems

The usefulness of sorting is obvious (perhaps a little too obvious, since sorting can be expensive and is
sometimes done when not strictly necessary). Sorting may traditionally be associated with data processing
and non-numerical programming, but it has many uses within the realm of numerical analysis. For
example, within the NAG Fortran Library, sorting is used to arrange eigenvalues in ascending order of
absolute value, in the manipulation of sparse matrices, and in the ranking of observations for
nonparametric statistics.

The general problem may be defined as follows. We are given N items of data

R1; R2; . . . ; RN:

Each item Ri contains a key Ki which can be ordered relative to any other key according to some
specified criterion (for example, ascending numeric value). The problem is to determine a permutation

pð1Þ; pð2Þ; . . . ; pðNÞ
which puts the keys in order:

Kpð1Þ � Kpð2Þ � . . . � KpðNÞ:

Sometimes we may wish actually to rearrange the items so that their keys are in order; for other purposes
we may simply require a table of indices so that the items can be referred to in sorted order; or yet again
we may require a table of ranks, that is, the positions of each item in the sorted order.

For example, given the single-character items, to be sorted into alphabetic order

E B A D C

the indices of the items in sorted order are

3 2 5 4 1

and the ranks of the items are

5 2 1 4 3.

Indices may be converted to ranks, and vice versa, by simply computing the inverse permutation.

The items may consist solely of the key (each item may simply be a number). On the other hand, the
items may contain additional information (for example, each item may be an eigenvalue of a matrix and its
associated eigenvector, the eigenvalue being the key). In the latter case there may be many distinct items
with equal keys, and it may be important to preserve the original order among them (if this is achieved, the
sorting is called ‘stable’).

There are a number of ingenious algorithms for sorting. For a fascinating discussion of them, and of the
whole subject, see Knuth (1973).

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

Four categories of routines are provided:

– routines which rearrange the data into sorted order (M01C-);

– routines which determine the ranks of the data, leaving the data unchanged (M01D);

– routines which rearrange the data according to pre-determined ranks (M01E);

Introduction – M01 NAG Fortran Library Manual

M01.2 [NP3546/20A]

– service routines (M01Z).

In the first two categories, routines are provided for real and integer numeric data, and for character data.
In the third category there are routines for rearranging real, complex, integer and character data. Utilities
for the manipulation of sparse matrices can be found in Chapter F11.

If the task is simply to rearrange a one-dimensional array of data into sorted order, then an M01C- routine
should be used, since this requires no extra workspace and is faster than any other method. There are no
M01C- routines for more complicated data structures, because the cost of rearranging the data is likely to
outstrip the cost of comparisons. Instead, a combination of M01D and M01E routines, or some other
approach, must be used as described below.

For many applications it is in fact preferable to separate the task of determining the sorted order (ranking)
from the task of rearranging data into a pre-determined order; the latter task may not need to be performed
at all. Frequently it may be sufficient to refer to the data in sorted order via an index vector, without
rearranging it. Frequently also one set of data (e.g., a column of a matrix) is used for determining a set of
ranks, which are then applied to other data (e.g., the remaining columns of the matrix).

To determine the ranks of a set of data, use an M01D routine. Routines are provided for ranking one-
dimensional arrays, and for ranking rows or columns of two-dimensional arrays. For ranking an arbitrary
data structure, use M01DZF, which is, however, much less efficient than the other M01D routines.

To create an index vector so that data can be referred to in sorted order, first call an M01D routine to
determine the ranks, and then call M01ZAF to convert the vector of ranks into an index vector.

To rearrange data according to pre-determined ranks: use an M01E routine if the data is stored in a one-
dimensional array; or if the data is stored in a more complicated structure

either use an index vector to generate a new copy of the data in the desired order

or rearrange the data without using extra storage by first calling M01ZCF and then using the simple
code-framework given in the document for M01ZCF (assuming that the elements of data all occupy
equal storage).

Examples of these operations can be found in the routine documents of the relevant routines.

4 Index

Ranking:
arbitrary data .. M01DZF
columns of a matrix, integer numbers ... M01DKF
columns of a matrix, real numbers .. M01DJF
rows of a matrix, integer numbers ... M01DFF
rows of a matrix, real numbers .. M01DEF
vector, character data ... M01DCF
vector, integer numbers ... M01DBF
vector, real numbers .. M01DAF

Rearranging (according to pre-determined ranks):
vector, character data ... M01ECF
vector, integer numbers ... M01EBF
vector, real numbers .. M01EAF
vector, complex numbers ... M01EDF

Service routines:
check validity of a permutation .. M01ZBF
decompose a permutation into cycles ... M01ZCF
invert a permutation (ranks to indices or vice versa) ... M01ZAF

Sorting (i.e., rearranging into sorted order):
vector, character data ... M01CCF
vector, integer numbers ... M01CBF
vector, real numbers .. M01CAF

M01 – Sorting Introduction – M01

[NP3546/20A] M01.3

5 Routines Withdrawn or Scheduled for Withdrawal

The following routines have been withdrawn. Advice on replacing calls to those withdrawn since Mark 13
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

M01AAF 13 M01DAF
M01ABF 13 M01DAF
M01ACF 13 M01DBF
M01ADF 13 M01DBF
M01AEF 13 M01DEF and M01EAF
M01AFF 13 M01DEF and M01EAF
M01AGF 13 M01DFF and M01EBF
M01AHF 13 M01DFF and M01EBF
M01AJF 16 M01DAF, M01ZAF and M01CAF
M01AKF 16 M01DAF, M01ZAF and M01CAF
M01ALF 13 M01DBF, M01ZAF and M01CBF
M01AMF 13 M01DBF, M01ZAF and M01CBF
M01ANF 13 M01CAF
M01APF 16 M01CAF
M01AQF 13 M01CBF
M01ARF 13 M01CBF
M01BAF 13 M01CCF
M01BBF 13 M01CCF
M01BCF 13 M01CCF
M01BDF 13 M01CCF

6 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison-Wesley

Introduction – M01 NAG Fortran Library Manual

M01.4 (last) [NP3546/20A]

	M01
	1 Scope of the Chapter
	2 Background to the Problems
	3 Recommendations on Choice and Use of Available Routines
	4 Index
	5 Routines Withdrawn or Scheduled for Withdrawal
	6 References

	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

