# NAG Fortran Library Routine Document

## G07EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

### **1** Purpose

G07EBF calculates a rank based (nonparametric) estimate and confidence interval for the difference in location between two independent populations.

## 2 Specification

```
SUBROUTINE G07EBF(METHOD, N, X, M, Y, CLEVEL, THETA, THETAL, THETAU,1ESTCL, ULOWER, UUPPER, WRK, IWRK, IFAIL)INTEGERN, M, IWRK(3*N), IFAILrealX(N), Y(M), CLEVEL, THETA, THETAL, THETAU, ESTCL,1ULOWER, UUPPER, WRK(3*(M+N))CHARACTER*1METHOD
```

## **3** Description

Consider two random samples from two populations which have the same continuous distribution except for a shift in the location. Let the random sample,  $x = (x_1, x_2, ..., x_n)^T$ , have distribution F(x) and the random sample,  $y = (y_1, y_2, ..., y_m)^T$ , have distribution  $F(x - \theta)$ .

G07EBF finds a point estimate,  $\hat{\theta}$ , of the difference in location  $\theta$  together with an associated confidence interval. The estimates are based on the ordered differences  $y_i - x_i$ . The estimate  $\hat{\theta}$  is defined by

$$\hat{\theta} = \text{median}\{y_i - x_i, i = 1, 2, \dots, n; j = 1, 2, \dots, m\}.$$

Let  $d_k$  for k = 1, 2, ..., nm denote the nm (ascendingly) ordered differences  $y_j - x_i$  for i = 1, 2, ..., n; j = 1, 2, ..., m. Then

- if nm is odd,  $\hat{\theta} = d_k$  where k = (nm 1)/2,
- if nm is even,  $\hat{\theta} = (d_k + d_{k+1})/2$  where k = nm/2.

This estimator arises from inverting the two sample Mann–Whitney rank test statistic,  $U(\theta_0)$ , for testing the hypothesis that  $\theta = \theta_0$ . Thus  $U(\theta_0)$  is the value of the Mann–Whitney U statistic for the two independent samples  $\{(x_i + \theta_0), i = 1, 2, ..., n\}$  and  $\{y_j, j = 1, 2, ..., m\}$ . Effectively  $U(\theta_0)$  is a monotonically increasing step function of  $\theta_0$  with

$$mean(U) = \mu = \frac{nm}{2},$$
$$var(U) = \sigma^2 \frac{nm(n+m+1)}{12}.$$

The estimate  $\hat{\theta}$  is the solution to the equation  $U(\hat{\theta}) = \mu$ ; two methods are available for solving this equation. These methods avoid the computation of all the ordered differences  $d_k$ ; this is because for large n and m both the storage requirements and the computation time would be high.

The first is an exact method based on a set partitioning procedure on the set of all differences  $y_j - x_i$  for i = 1, 2, ..., n; j = 1, 2, ..., m. This is adapted from the algorithm proposed by Monahan (1984) for the computation of the Hodges-Lehmann estimator for a single population.

The second is an iterative algorithm, based on the Illinois method which is a modification of the *regula* falsi method, see McKean and Ryan (1977). This algorithm has proved suitable for the function  $U(\theta_0)$  which is asymptotically linear as a function of  $\theta_0$ .

The confidence interval limits are also based on the inversion of the Mann-Whitney test statistic.

Given a desired percentage for the confidence interval,  $1 - \alpha$ , expressed as a proportion between 0.0 and 1.0 initial estimates of the upper and lower confidence limits for the Mann–Whitney U statistic are found;

$$U_{l} = \mu - 0.5 + (\sigma \times \Phi^{-1}(\alpha/2))$$
$$U_{u} = \mu + 0.5 + (\sigma \times \Phi^{-1}((1-\alpha)/2))$$

where  $\Phi^{-1}$  is the inverse cumulative Normal distribution function.

 $U_l$  and  $U_u$  are rounded to the nearest integer values. These estimates are refined using an exact method, without taking ties into account, if  $n + m \le 40$  and  $\max(n, m) \le 30$  and a Normal approximation otherwise, to find  $U_l$  and  $U_u$  satisfying

$$P(U \le U_l) \le \alpha/2$$
  
$$P(U \le U_l + 1) > \alpha/2$$

and

$$P(U \ge U_u) \le \alpha/2$$
  
$$P(U \ge U_u - 1) > \alpha/2.$$

The function  $U(\theta_0)$  is a monotonically increasing step function. It is the number of times a score in the second sample,  $y_j$ , precedes a score in the first sample,  $x_i + \theta$ , where we only count a half if a score in the second sample actually equals a score in the first.

Let  $U_l = k$ ; then  $\theta_l = d_{k+1}$ . This is the largest value  $\theta_l$  such that  $U(\theta_l) = U_l$ .

Let  $U_u = nm - k$ ; then  $\theta_u = d_{nm-k}$ . This is the smallest value  $\theta_u$  such that  $U(\theta_u) = U_u$ .

As in the case of  $\hat{\theta}$ , these equations may be solved using either the exact or iterative methods to find the values  $\theta_l$  and  $\theta_u$ .

Then  $(\theta_l, \theta_u)$  is the confidence interval for  $\theta$ . The confidence interval is thus defined by those values of  $\theta_0$  such that the null hypothesis,  $\theta = \theta_0$ , is not rejected by the Mann–Whitney two sample rank test at the  $(100 \times \alpha)\%$  level.

### 4 References

Lehmann E L (1975) Nonparametrics: Statistical Methods Based on Ranks Holden-Day

McKean J W and Ryan T A (1977) Algorithm 516: An algorithm for obtaining confidence intervals and point estimates based on ranks in the two-sample location problem *ACM Trans. Math. Software* **10** 183–185

Monahan J F (1984) Algorithm 616: Fast computation of the Hodges–Lehman location estimator ACM Trans. Math. Software 10 265–270

#### **5** Parameters

1: METHOD – CHARACTER\*1

On entry: specifies the method to be used.

If METHOD = 'E', the exact algorithm is used.

If METHOD = 'A', the iterative algorithm is used.

Constraint: METHOD = 'E' or 'A'.

2: N - INTEGER

On entry: the size of the first sample, n. Constraint:  $N \ge 1$ . Input

Input

| 3:  | X(N) – <i>real</i> array Input                                                                                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
|     | On entry: the observations of the first sample, $x_i$ for $i = 1, 2,, n$ .                                                         |
| 4:  | M – INTEGER Input                                                                                                                  |
|     | On entry: the size of the second sample, m.                                                                                        |
|     | Constraint: $M \ge 1$ .                                                                                                            |
| 5:  | Y(M) – <i>real</i> array Input                                                                                                     |
|     | On entry: the observations of the second sample, $y_j$ for $j = 1, 2,, m$ .                                                        |
| 6:  | CLEVEL – real Input                                                                                                                |
|     | On entry: the confidence interval required, $1 - \alpha$ ; e.g., for a 95% confidence interval set CLEVEL = 0.95.                  |
|     | Constraint: $0.0 < CLEVEL < 1.0$ .                                                                                                 |
| 7:  | THETA – real Output                                                                                                                |
|     | On exit: the estimate of the difference in the location of the two populations, $\hat{\theta}$ .                                   |
| 8:  | THETAL – real Output                                                                                                               |
|     | On exit: the estimate of the lower limit of the confidence interval, $\theta_l$ .                                                  |
| 9:  | THETAU – real Output                                                                                                               |
|     | On exit: the estimate of the upper limit of the confidence interval, $\theta_u$ .                                                  |
| 10: | ESTCL – real Output                                                                                                                |
|     | On exit: an estimate of the actual percentage confidence of the interval found, as a proportion between $(0.0, 1.0)$ .             |
| 11: | ULOWER – real Output                                                                                                               |
|     | On exit: the value of the Mann–Whitney $U$ statistic corresponding to the lower confidence limit, $U_l$ .                          |
| 12: | UUPPER – real Output                                                                                                               |
|     | On exit: the value of the Mann–Whitney $U$ statistic corresponding to the upper confidence limit, $U_u$ .                          |
| 13: | WRK(3*(M+N)) – <i>real</i> array Workspace                                                                                         |
| 14: | IWRK(3*N) – INTEGER array Workspace                                                                                                |
| 15: | IFAIL – INTEGER Input/Output                                                                                                       |
|     | On entry: IFAIL must be set to $0, -1$ or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details. |
|     | On exit: IFAIL = 0 unless the routine detects an error (see Section 6).                                                            |

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

## 6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

```
On entry, METHOD \neq 'E' or 'A',
or N < 1,
or M < 1,
or CLEVEL \leq 0.0,
or CLEVEL > 1.0.
```

#### IFAIL = 2

Each sample consists of identical values. All estimates are set to the common difference between the samples.

IFAIL = 3

For at least one of the estimates  $\hat{\theta}$ ,  $\theta_l$  and  $\theta_u$ , the underlying iterative algorithm (when METHOD = 'A') failed to converge. This is an unlikely exit but the estimate should still be a reasonable approximation.

## 7 Accuracy

The routine should return results accurate to 5 significant figures in the width of the confidence interval, that is the error for any one of the three estimates should be less than  $0.00001 \times (THETAU - THETAL)$ .

## 8 Further Comments

The time taken increases with the sample sizes n and m.

## 9 Example

The following program calculates a 95% confidence interval for the difference in location between the two populations from which the two samples of sizes 50 and 100 are drawn respectively.

### 9.1 Program Text

**Note:** the listing of the example program presented below uses *bold italicised* terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
GO7EBF Example Program Text
*
*
      Mark 16 Release. NAG Copyright 1992.
*
      .. Parameters ..
                       NIN, NOUT
      INTEGER
      PARAMETER
                       (NIN=5, NOUT=6)
      INTEGER
                       NMAX, MMAX
                       (NMAX=100,MMAX=100)
      PARAMETER
      .. Local Scalars .
     real
                       CLEVEL, ESTCL, THETA, THETAL, THETAU, ULOWER,
     +
                       UUPPER
      INTEGER
                       I, IFAIL, M, N
      .. Local Arrays ..
*
     real
                       WRK(3*(NMAX+MMAX)), X(NMAX), Y(MMAX)
      INTEGER
                       IWRK(3*NMAX)
      .. External Subroutines ..
                       G07EBF
      EXTERNAL
      .. Executable Statements ..
      WRITE (NOUT, *) 'GO7EBF Example Program Results'
      Skip Heading in data file
*
      READ (NIN, *)
     READ (NIN,*) N, M
      IF (N.LE.1 .OR. N.GT.NMAX .OR. M.LE.1 .OR. M.GT.MMAX) THEN
         WRITE (NOUT,99999) N, M
```

```
ELSE
         READ (NIN, *)
         READ (NIN, \star) (X(I), I=1, N)
         READ (NIN, *)
         READ (NIN,*) (Y(I),I=1,M)
         READ (NIN, *)
         READ (NIN,*) CLEVEL
         IFAIL = 0
         CALL G07EBF('Approx', N, X, M, Y, CLEVEL, THETA, THETAL, THETAU, ESTCL,
    +
                      ULOWER, UUPPER, WRK, IWRK, IFAIL)
*
         WRITE (NOUT, *)
         WRITE (NOUT,*) ' Location estimator
                                                   Confidence Interval '
         WRITE (NOUT, *)
         WRITE (NOUT,99998) THETA, '( ', THETAL, ', ', THETAU, ')'
         WRITE (NOUT, *)
         WRITE (NOUT, *) ' Corresponding Mann-Whitney U statistics'
         WRITE (NOUT, *)
         WRITE (NOUT, 99997) ' Lower : ', ULOWER
         WRITE (NOUT, 99997) ' Upper : ', UUPPER
      END IF
      STOP
99999 FORMAT (4X,'N or M is out of range : N = ', I8,' and M = ', I8)
99998 FORMAT (3X,F10.4,12X,A,F6.4,A,F6.4,A)
99997 FORMAT (A,F8.2)
      END
```

#### 9.2 Program Data

```
G07EBF Example Program Data
 50 100
 First sample of N observations
 -0.582 0.157 -0.523 -0.769 2.338 1.664 -0.981 1.549 1.131 -0.460
 -0.484 1.932 0.306 -0.602 -0.979 0.132 0.256 -0.094 1.065 -1.084
 -0.969 -0.524 0.239 1.512 -0.782 -0.252 -1.163 1.376 1.674 0.831
  1.478 -1.486 -0.808 -0.429 -2.002 0.482 -1.584 -0.105 0.429 0.568
0.944 2.558 -1.801 0.242 0.763 -0.461 -1.497 -1.353 0.301 1.941
 Second sample of M observations
  1.995 0.007 0.997 1.089 2.004 0.171 0.294 2.448 0.214 0.773
 2.960 0.025 0.638 0.937 -0.568 -0.711 0.931 2.601
-0.050 1.341 2.282 0.745 1.633 0.944 2.370 0.293
                                                                    1.121 -0.251
                                                                    0.895 0.938
  0.199 0.812 1.253 0.590 1.522 -0.685 1.259 0.571 1.579 0.568
  0.381 0.829 0.277 0.656 2.497 1.779 1.922 -0.174
                                                                    2.132 2.793
  0.102 1.569 1.267 0.490 0.077 1.366 0.056 0.605 0.628 1.650
0.104 2.194 2.869 -0.171 -0.598 2.134 0.917 0.630 0.209 1.328
0.368 0.756 2.645 1.161 0.347 0.920 1.256 -0.052 1.474 0.510
  1.386 3.550 1.392 -0.358 1.938 1.727 -0.372 0.911 0.499 0.066
  1.467 1.898 1.145 0.501 2.230 0.212 0.536 1.690 1.086 0.494
 Confidence Level
```

```
0.95
```

#### 9.3 Program Results

G07EBF Example Program Results

Location estimator Confidence Interval

0.9505 (0.5650, 1.3050)

Corresponding Mann-Whitney U statistics

Lower : 2007.00 Upper : 2993.00