NAG Fortran Library Routine Document

G05NBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

G05NBF selects a pseudo-random sample without replacement from an integer vector.

2 Specification

```fortran
SUBROUTINE G05NBF(IPOP, N, ISAMPL, M, IGEN, ISEED, IFAIL)
INTEGER IPOP(N), N, ISAMPL(M), M, IGEN, ISEED(4), IFAIL
```

3 Description

G05NBF The routine selects \(m \) elements from a population vector IPOP of length \(n \) and places them in a sample vector ISAMPL. Their order in IPOP will be preserved in ISAMPL. Each of the \(\binom{n}{m} \) possible combinations of elements of ISAMPL may be regarded as being equally probable.

For moderate or large values of \(n \) (greater than 75 say), it is theoretically impossible that all combinations of size \(m \) may occur, unless \(m \) is near 1 or near \(n \). This is because \(\binom{n}{m} \) exceeds the cycle length of G05KAF for all valid values of IGEN. For practical purposes this is irrelevant, as the time taken to generate all possible combinations is many millenia.

One of the initialisation routines G05KBF (for a repeatable sequence if computed sequentially) or G05KCF (for a non-repeatable sequence) must be called prior to the first call to G05NBF.

4 References

5 Parameters

1: IPOP(N) – INTEGER array

 Input

 On entry: the population to be sampled.

2: N – INTEGER

 Input

 On entry: the number of elements in the population vector to be sampled.

 Constraint: \(N \geq 1 \).

3: ISAMPL(M) – INTEGER array

 Output

 On entry: the selected sample.

4: M – INTEGER

 Input

 On entry: the sample size.

 Constraint: \(1 \leq M \leq N \).
5: IGEN – INTEGER

Input

On entry: must contain the identification number for the generator to be used to return a pseudo-
random number and should remain unchanged following initialisation by a prior call to one of the
routines G05KBF or G05KCF.

6: ISEED(4) – INTEGER array

Input/Output

On entry: contains values which define the current state of the selected generator.

On exit: contains updated values defining the new state of the selected generator.

7: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. **When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.**

6 **Error Indicators and Warnings**

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

On entry, N < 1.

IFAIL = 2

On entry, M < 1, or M > N.

7 **Accuracy**

Not applicable.

8 **Further Comments**

The time taken by the routine is of order \(n \).

In order to sample other kinds of vectors, or matrices of higher dimension, the following technique may be
used:

(a) set IPOP(i) = i, for \(i = 1, 2, \ldots, n \);

(b) use G05NBF to take a sample from IPOP and put it into ISAMPL;

(c) use the contents of ISAMPL as a set of indices to access the relevant vector or matrix.

In order to divide a population into several groups, G05NAF is more efficient.

9 **Example**

In the example program random samples of size 1, 2, \ldots, 8 are selected from a vector containing the first
eight positive integers in ascending order. The samples are generated and printed for each sample size by
a call to G05NBF after initialisation by G05KBF.
9.1 Program Text

Note: the listing of the example program presented below uses \textit{bold italicised} terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

* G05NBF Example Program Text
* .. Parameters ..
 INTEGER NOUT, N
 PARAMETER (NOUT=6, N=8)
* .. Local Scalars ..
 INTEGER I, IFAIL, IGEN, K, M
* .. Local Arrays ..
 INTEGER IPOP(N), ISAMPL(N), ISEED(4)
* .. External Subroutines ..
 EXTERNAL G05KBF, G05NBF
* .. Executable Statements ..
 WRITE (NOUT,*) 'G05NBF Example Program Results'
 WRITE (NOUT,*)
 * Initialise the seed to a repeatable sequence
 ISEED(1) = 1762543
 ISEED(2) = 9324783
 ISEED(3) = 1542344
 ISEED(4) = 742355
 * IGEN identifies the stream.
 IGEN = 1
 CALL G05KBF(IGEN, ISEED)
 WRITE (NOUT,99999) ' Samples from the first ', N, ' integers'
 WRITE (NOUT,*)
 WRITE (NOUT,*) ' Sample size Values'
 DO 20 I = 1, N
 IPOP(I) = I
 20 CONTINUE
 DO 40 M = 1, N
 IFAIL = 0
 CALL G05NBF(IPOP, N, ISAMPL, M, IGEN, ISEED, IFAIL)
 * WRITE (NOUT,99998) M, (ISAMPL(K),K=1,M)
 40 CONTINUE
 STOP
 * 99999 FORMAT (1X,A,I1,A)
 99998 FORMAT (1X,I6,10X,8I3)
END

9.2 Program Data

None.

9.3 Program Results

G05NBF Example Program Results

Samples from the first 8 integers

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2 5</td>
</tr>
<tr>
<td>3</td>
<td>3 4 8</td>
</tr>
<tr>
<td>4</td>
<td>2 4 5 6</td>
</tr>
<tr>
<td>5</td>
<td>1 2 4 6 8</td>
</tr>
<tr>
<td>6</td>
<td>1 2 3 5 7 8</td>
</tr>
<tr>
<td>7</td>
<td>1 2 3 4 5 6 8</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>