NAG Fortran Library Routine Document G03DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

G03DCF allocates observations to groups according to selected rules. It is intended for use after G03DAF.

2 Specification

```
SUBROUTINE GO3DCF(TYPE, EQUAL, PRIORS, NVAR, NG, NIG, GMEAN, LDG, GC,

DET, NOBS, M, ISX, X, LDX, PRIOR, P, LDP, IAG, ATIQ,

ATI, WK, IFAIL)

INTEGER

NVAR, NG, NIG(NG), LDG, NOBS, M, ISX(M), LDX, LDP,

IAG(NOBS), IFAIL

real

GMEAN(LDG,NVAR), GC((NG+1)*NVAR*(NVAR+1)/2), DET(NG),

X(LDX,M), PRIOR(NG), P(LDP,NG), ATI(LDP,*), WK(2*NVAR)

LOGICAL

CHARACTER*1

TYPE, EQUAL, PRIORS
```

3 Description

Discriminant analysis is concerned with the allocation of observations to groups using information from other observations whose group membership is known, X_t ; these are called the training set. Consider p variables observed on n_g populations or groups. Let \bar{x}_j be the sample mean and S_j the within-group variance-covariance matrix for the jth group; these are calculated from a training set of n observations with n_j observations in the jth group, and let x_k be the kth observation from the set of observations to be allocated to the n_g groups. The observation can be allocated to a group according to a selected rule. The allocation rule or discriminant function will be based on the distance of the observation from an estimate of the location of the groups, usually the group means. A measure of the distance of the observation from the jth group mean is given by the Mahalanobis distance, D_{kj}^2 :

$$D_{kj}^{2} = (x_k - \bar{x}_j)^{\mathsf{T}} S_j^{-1} (x_k - \bar{x}_j).$$
 (1)

If the pooled estimate of the variance-covariance matrix S is used rather than the within-group variance-covariance matrices, then the distance is:

$$D_{kj}^{2} = (x_k - \bar{x}_j)^{\mathrm{T}} S^{-1} (x_k - \bar{x}_j).$$
(2)

In addition to the distances a set of prior probabilities of group membership, π_j , for $j=1,2,\ldots,n_g$, may be used, with $\sum \pi_j = 1$. The prior probabilities reflect the user's view as to the likelihood of the observations coming from the different groups. Two common cases for prior probabilities are $\pi_1 = \pi_2 = \cdots = \pi_{n_g}$, that is equal prior probabilities, and $\pi_j = n_j/n$, for $j=1,2,\ldots,n_g$, that is prior probabilities proportional to the number of observations in the groups in the training set.

G03DCF uses one of four allocation rules. In all four rules the p variables are assumed to follow a multivariate Normal distribution with mean μ_j and variance-covariance matrix Σ_j if the observation comes from the jth group. The different rules depend on whether or not the within-group variance-covariance matrices are assumed equal, i.e., $\Sigma_1 = \Sigma_2 = \cdots = \Sigma_{n_g}$, and whether a predictive or estimative approach is used. If $p(x_k|\mu_j,\Sigma_j)$ is the probability of observing the observation x_k from group j, then the posterior probability of belonging to group j is:

$$p(j|x_k, \mu_i, \Sigma_i) \propto p(x_k|\mu_i, \Sigma_i)\pi_i.$$
 (3)

In the estimative approach the parameters μ_j and Σ_j in (3) are replaced by their estimates calculated from X_t . In the predictive approach a non-informative prior distribution is used for the parameters and a posterior distribution for the parameters, $p(\mu_j, \Sigma_j | X_t)$, is found. A predictive distribution is then obtained by integrating $p(j|x_k, \mu_j, \Sigma_j)p(\mu_j, \Sigma_j | X)$ over the parameter space. This predictive distribution then replaces $p(x_k | \mu_j, \Sigma_j)$ in (3). See Aitchison and Dunsmore (1975), Aitchison *et al.* (1977) and Moran and Murphy (1979) for further details.

The observation is allocated to the group with the highest posterior probability. Denoting the posterior probabilities, $p(j|x_k, \mu_i, \Sigma_i)$, by q_i , the four allocation rules are:

(i) Estimative with equal variance-covariance matrices - Linear Discrimination

$$\log q_j \propto -\frac{1}{2}D_{kj}^2 + \log \pi_j$$

(ii) Estimative with unequal variance-covariance matrices - Quadratic Discrimination

$$\log q_i \propto -\frac{1}{2} D_{ki}^2 + \log \pi_i - \frac{1}{2} \log |S_i|$$

(iii) Predictive with equal variance-covariance matrices

$$q_j^{-1} \propto ((n_j+1)/n_j)^{p/2} \{1 + [n_j/((n-n_g)(n_j+1))]D_{kj}^{-2}\}^{(n+1-n_g)/2}$$

(iv) Predictive with unequal variance-covariance matrices

$$q_j^{-1} \propto C\{((n_j^2-1)/n_j)|S_j|\}^{p/2} \ \{1+(n_j/(n_j^2-1)){D_{kj}}^2\}^{n_j/2},$$

where

$$C = \frac{\Gamma(\frac{1}{2}(n_j - p))}{\Gamma(\frac{1}{2}n_j)}.$$

In the above the appropriate value of D_{kj}^2 from (1) or (2) is used. The values of the q_j are standardized so that,

$$\sum_{j=1}^{n_g} q_j = 1.$$

Moran and Murphy (1979) show the similarity between the predictive methods and methods based upon likelihood ratio tests.

In addition to allocating the observation to a group G03DCF computes an atypicality index, $I_j(x_k)$. This represents the probability of obtaining an observation more typical of group j than the observed x_k , see Aitchison and Dunsmore (1975) and Aitchison *et al.* (1977). The atypicality index is computed for unequal within-group variance-covariance matrices as:

$$I_i(x_k) = P(B \le z : \frac{1}{2}p, \frac{1}{2}(n_i - p))$$

where $P(B \le \beta : a, b)$ is the lower tail probability from a beta distribution and

$$z = D_{kj}^2/(D_{kj}^2 + (n_j^2 - 1)/n_j),$$

and for equal within-group variance-covariance matrices as:

$$I_j(x_k) = P(B \le z : \frac{1}{2}p, \frac{1}{2}(n - n_g - p + 1)),$$

with

$$z = D_{kj}^2/(D_{kj}^2 + (n - n_q)(n_j + 1)/n_j).$$

If $I_j(x_k)$ is close to 1 for all groups it indicates that the observation may come from a grouping not represented in the training set. Moran and Murphy (1979) provide a frequentist interpretation of $I_j(x_k)$.

G03DCF.2 [NP3546/20A]

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge

Aitchison J, Habbema J D F and Kay J W (1977) A critical comparison of two methods of statistical discrimination *Appl. Statist.* **26** 15–25

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

Moran M A and Murphy B J (1979) A closer look at two alternative methods of statistical discrimination *Appl. Statist.* **28** 223–232

Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill

5 Parameters

1: TYPE – CHARACTER*1

Input

On entry: whether the estimative or predictive approach is used.

If TYPE = 'E' the estimative approach is used.

If TYPE = 'P' the predictive approach is used.

Constraint: TYPE = 'E' or 'P'.

2: EQUAL - CHARACTER*1

Input

On entry: indicates whether or not the within-group variance-covariance matrices are assumed to be equal and the pooled variance-covariance matrix used.

If EQUAL = 'E' the within-group variance-covariance matrices are assumed equal and the matrix R stored in the first p(p+1)/2 elements of GC is used.

If EQUAL = 'U' the within-group variance-covariance matrices are assumed to be unequal and the matrices R_i , for $i = 1, 2, ..., n_g$, stored in the remainder of GC are used.

Constraint: EQUAL = 'E' or 'U'.

3: PRIORS - CHARACTER*1

Input

On entry: indicates the form of the prior probabilities to be used.

If PRIORS = 'E', equal prior probabilities are used.

If PRIORS = 'P', prior probabilities proportional to the group sizes in the training set, n_i , are used.

If PRIORS = 'I', the prior probabilities are input in PRIOR.

Constraint: PRIORS = 'E', 'I' or 'P'.

4: NVAR – INTEGER

Input

On entry: the number of variables, p, in the variance-covariance matrices.

Constraint: NVAR ≥ 1 .

5: NG – INTEGER

Input

On entry: the number of groups, n_a .

Constraint: $NG \ge 2$.

6: NIG(NG) – INTEGER array

Input

On entry: the number of observations in each group in the training set, n_i .

Constraints:

if EQUAL = 'E', NIG(j) > 0, for
$$j = 1, 2, ..., n_g$$
 and $\sum_{j=1}^{n_g} \text{NIG}(j) > \text{NG} + \text{NVAR}$, if EQUAL = 'U', NIG(j) > NVAR, for $j = 1, 2, ..., n_g$.

7: GMEAN(LDG,NVAR) – *real* array

Input

On entry: the jth row of GMEAN contains the means of the p variables for the jth group, for $j = 1, 2, ..., n_i$. These are returned by G03DAF.

8: LDG – INTEGER

Input

On entry: the first dimension of the array GMEAN as declared in the (sub)program from which G03DCF is called.

Constraint: LDG \geq NG.

9: GC((NG+1)*NVAR*(NVAR+1)/2) - real array

Input

On entry: the first p(p+1)/2 elements of GC should contain the upper triangular matrix R and the next n_q blocks of p(p+1)/2 elements should contain the upper triangular matrices R_i .

All matrices must be stored packed by column. These matrices are returned by G03DAF. If EQUAL = 'E' only the first p(p+1)/2 elements are referenced, if EQUAL = 'U' only the elements p(p+1)/2+1 to $(n_q+1)p(p+1)/2$ are referenced.

Constraints:

if EQUAL = 'E' the diagonal elements of
$$R$$
 must be $\neq 0.0$, if EQUAL = 'U' the diagonal elements of the R_j must be $\neq 0.0$, for $j=1,2,\ldots,n_q$.

10: DET(NG) – *real* array

Input

On entry: if EQUAL = 'U' the logarithms of the determinants of the within-group variance-covariance matrices as returned by G03DAF. Otherwise DET is not referenced.

11: NOBS – INTEGER

Input

On entry: the number of observations in X which are to be allocated.

Constraint: NOBS ≥ 1 .

12: M – INTEGER

Input

On entry: the number of variables in the data array X.

Constraint: $M \ge NVAR$.

13: ISX(M) – INTEGER array

Input

On entry: ISX(l) indicates if the lth variable in X is to be included in the distance calculations.

If ISX(l) > 0 the lth variable is included, for l = 1, 2, ..., M; otherwise the lth variable is not referenced.

Constraint: ISX(l) > 0 for NVAR values of l.

14: X(LDX,M) - real array

Input

On entry: X(k, l) must contain the kth observation for the lth variable, for k = 1, 2, ..., NOBS; l = 1, 2, ..., M.

[NP3546/20A]

15: LDX – INTEGER

Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03DCF is called.

Constraint: LDX \geq NOBS.

16: PRIOR(NG) - real array

Input/Output

On entry: if PRIORS = 'I' the prior probabilities for the n_q groups.

Constraint: if PRIORS = 'I', then PRIOR(j) > 0.0 for $j = 1, 2, ..., n_a$ and

$$\left|1 - \sum_{j=1}^{n_g} PRIOR(j)\right| \le 10 \times machine precision.$$

On exit: if PRIORS = 'P' the computed prior probabilities in proportion to group sizes for the n_g groups. If PRIORS = 'I' the input prior probabilities will be unchanged, and if PRIORS = 'E', PRIOR is not set.

17: P(LDP,NG) - real array

Output

On exit: P(k, j) contains the posterior probability p_{kj} for allocating the kth observation to the jth group, for k = 1, 2, ..., NOBS; $j = 1, 2, ..., n_q$.

18: LDP – INTEGER

Input

On entry: the first dimension of the array P as declared in the (sub)program from which G03DCF is called.

Constraint: LDP \geq NOBS.

19: IAG(NOBS) – INTEGER array

Output

On exit: the groups to which the observations have been allocated.

20: ATIQ – LOGICAL

Input

On entry: ATIQ must be .TRUE. if atypicality indices are required. If ATIQ is .FALSE. the array ATI is not set.

21: ATI(LDP,*) – *real* array

Output

Note: the second dimension of the array ATI must be at least NG, if ATIQ is .TRUE., and 1 otherwise.

On exit: if AITQ is .TRUE., ATI(k,j) will contain the atypicality index for the kth observation with respect to the jth group, for $k=1,2,\ldots, \text{NOBS}; \ j=1,2,\ldots, n_g$. If ATIQ is .FALSE., ATI is not set

22: WK(2*NVAR) – *real* array

Workspace

23: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

```
IFAIL = 1
      On entry, NVAR < 1,
                 NG < 2,
      or
                 NOBS < 1,
      or
      or
                 M < NVAR,
                 LDG < NG,
      or
                 LDX < NOBS,
      or
                 LDP < NOBS,
      or
                 TYPE \neq 'E' or 'P',
      or
                 EQUAL \neq 'E' or 'U'.
      or
                 PRIORS \neq 'E', 'I' or 'P'.
      or
IFAIL = 2
      On entry, the number of variables indicated by ISX is not equal to NVAR,
                 EQUAL = 'E' and NIG(j) \leq 0, for some j,
                 EQUAL = 'E' and \sum_{j=1}^{n_g} \text{NIG}(j) \leq \text{NG} + \text{NVAR},
      or
                 EQUAL = 'U' and NIG(j) \le NVAR for some j.
      or
IFAIL = 3
      On entry, PRIORS = 'I' and PRIOR(j) \le 0.0 for some j,
                 PRIORS = 'I' and \sum_{i=1}^{n_g} \text{PRIOR}(j) is not within 10 \times machine precision of 1.
      or
IFAIL = 4
      On entry, EQUAL = 'E' and a diagonal element of R is zero,
                 EQUAL = 'U' and a diagonal element of R_i for some j is zero.
```

7 Accuracy

The accuracy of the returned posterior probabilities will depend on the accuracy of the input R or R_j matrices. The atypicality index should be accurate to four significant places.

8 Further Comments

The distances D_{kj}^2 can be computed using G03DBF if other forms of discrimination are required.

9 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three 'types' of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates (mg/24hr) of two steroid metabolites. Observations for a total of 21 patients are input and the group means and R matrices are computed by G03DAF. A further six observations of unknown type are input and allocations made using the predictive approach and under the assumption that the within-group covariance matrices are not equal. The posterior probabilities of group membership, q_j , and the atypicality index are printed along with the allocated group. The atypicality index shows that observations 5 and 6 do not seem to be typical of the three types present in the initial 21 observations.

G03DCF.6 [NP3546/20A]

9.1 Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
GO3DCF Example Program Text
   Mark 15 Release. NAG Copyright 1991.
   .. Parameters ..
                     NIN, NOUT
   INTEGER
   PARAMETER
                      (NIN=5, NOUT=6)
   INTEGER
                     NMAX, MMAX, GPMAX
                     (NMAX=21,MMAX=2,GPMAX=3)
   PARAMETER
   .. Local Scalars ..
   real
                     DF, SIG, STAT
   INTEGER
                     I, IFAIL, J, M, N, NG, NOBS, NVAR
   CHARACTER
                     EQUAL, TYPE, WEIGHT
   .. Local Arrays ..
                     ATI(NMAX, GPMAX), DET(GPMAX),
   real
                     GC((GPMAX+1)*MMAX*(MMAX+1)/2), GMEAN(GPMAX,MMAX),
  +
                     P(NMAX,GPMAX), PRIOR(GPMAX), WK(NMAX*(MMAX+1)),
                     \mathtt{WT}(\mathtt{NMAX}) , \mathtt{X}(\mathtt{NMAX},\mathtt{MMAX})
   INTEGER
                     IAG(NMAX), ING(NMAX), ISX(MMAX), IWK(GPMAX),
                     NIG (GPMAX)
   .. External Subroutines ..
   EXTERNAL
                     GO3DAF, GO3DCF
   .. Executable Statements ..
   WRITE (NOUT,*) 'GO3DCF Example Program Results'
   Skip headings in data file
   READ (NIN,*)
   READ (NIN, \star) N, M, NVAR, NG, WEIGHT
   IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
      IF (WEIGHT.EQ.'W' .OR. WEIGHT.EQ.'w') THEN
         DO 20 I = 1, N
             READ (NIN,*) (X(I,J),J=1,M), ING(I), WT(I)
20
          CONTINUE
      ELSE
         DO 40 I = 1, N
             READ (NIN, \star) (X(I,J),J=1,M), ING(I)
40
         CONTINUE
      END IF
      READ (NIN, \star) (ISX(J), J=1, M)
      IFAIL = 0
      CALL GO3DAF(WEIGHT, N, M, X, NMAX, ISX, NVAR, ING, NG, WT, NIG, GMEAN,
                   GPMAX, DET, GC, STAT, DF, SIG, WK, IWK, IFAIL)
      READ (NIN,*) NOBS, EQUAL, TYPE
      IF (NOBS.LE.NMAX) THEN
         DO 60 I = 1, NOBS
             READ (NIN, \star) (X(I,J),J=1,M)
          CONTINUE
60
         IFAIL = 0
          CALL GO3DCF(TYPE, EQUAL, 'Equal priors', NVAR, NG, NIG, GMEAN,
                      GPMAX,GC,DET,NOBS,M,ISX,X,NMAX,PRIOR,P,NMAX,IAG,
                       .TRUE.,ATI,WK,IFAIL)
         WRITE (NOUT, *)
         WRITE (NOUT,*) '
                              Obs
                                         Posterior
                                                            Allocated',
  +
                  Atypicality'
         WRITE (NOUT, *)
                           probabilities
                                             to group
                                                             index'
         WRITE (NOUT, *)
         DO 80 I = 1, NOBS
             WRITE (NOUT, 99999) I, (P(I,J), J=1,NG), IAG(I),
               (ATI(I,J),J=1,NG)
80
         CONTINUE
      END IF
   END IF
   STOP
```

```
*
99999 FORMAT (1X,2(16,5X,3F6.3))
END
```

9.2 Program Data

```
GO3DCF Example Program Data 21 2 2 3 'U'
  1.1314 2.4596
  1.0986
           0.2624
  0.6419
          -2.3026
                     1
  1.3350
          -3.2189
                      1
          0.0953
  1.4110
                     1
  0.6419
         -0.9163
  2.1163
           0.0000
                     2
  1.3350
          -1.6094
                      2
  1.3610
          -0.5108
                      2
  2.0541
          0.1823
  2.2083
          -0.5108
                     2
          1.2809
  2.7344
                      2
  2.0412
                      2
           0.4700
         -0.9163
  1.8718
                      2
                     2
  1.7405
         -0.9163
          0.4700
                     2
  2.6101
  2.3224
            1.8563
                      3
  2.2192
                      3
           2.0669
  2.2618
          1.1314
  3.9853
          0.9163
                     3
          2.0281
  2.7600
  1
  6 'U' 'P'
  1.6292 -0.9163
2.5572 1.6094
          -0.2231
  2.5649
  0.9555
         -2.3026
  3.4012
          -2.3026
  3.0204
          -0.2231
```

9.3 Program Results

GO3DCF Example Program Results

Obs	Posterior probabilities	Allocated to group	Atypicality index
1	0.094 0.905 0.002	2	0.596 0.254 0.975
2	0.005 0.168 0.827	3	0.952 0.836 0.018
3	0.019 0.920 0.062	2	0.954 0.797 0.912
4	0.697 0.303 0.000	1	0.207 0.860 0.993
5	0.317 0.013 0.670	3	0.991 1.000 0.984
6	0.032 0.366 0.601	3	0.981 0.978 0.887

G03DCF.8 (last) [NP3546/20A]