NAG Fortran Library Routine Document ### G02CCF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. ### 1 Purpose G02CCF performs a simple linear regression with dependent variable y and independent variable x, omitting cases involving missing values. ### 2 Specification SUBROUTINE GO2CCF(N, X, Y, XMISS, YMISS, RESULT, IFAIL) INTEGER N, IFAIL real X(N), Y(N), XMISS, YMISS, RESULT(21) ### 3 Description The routine fits a straight line of the form $$y = a + bx$$ to those of the data points $$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$ that do not include missing values, such that $$y_i = a + bx_i + e_i$$ for those (x_i, y_i) , i = 1, 2, ..., n (n > 2) which do not include missing values. The routine eliminates all pairs of observations (x_i, y_i) which contain a missing value for either x or y, and then calculates the regression coefficient, b, the regression constant, a, and various other statistical quantities, by minimizing the sum of the e_i^2 over those cases remaining in the calculations. The input data consists of the n pairs of observations $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ on the independent variable x and the dependent variable y. In addition two values, xm and ym, are given which are considered to represent missing observations for x and y respectively. (See Section 7). Let $w_i = 0$ if the *i*th observation of either x or y is missing, i.e., if $x_i = xm$ and/or $y_i = ym$; and $w_i = 1$ otherwise, for i = 1, 2, ..., n. The quantities calculated are: (a) Means: $$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}; \quad \bar{y} = \frac{\sum_{i=1}^{n} w_i y_i}{\sum_{i=1}^{n} w_i}.$$ (b) Standard deviations: $$s_x = \sqrt{\frac{\sum_{i=1}^n w_i (x_i - \bar{x})^2}{\sum_{i=1}^n w_i - 1}}; \quad s_y = \sqrt{\frac{\sum_{i=1}^n w_i (y_i - \bar{y})^2}{\sum_{i=1}^n w_i - 1}}.$$ (c) Pearson product-moment correlation coefficient: $$r = \frac{\sum_{i=1}^{n} w_i(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} w_i(x_i - \bar{x})^2 \sum_{i=1}^{n} w_i(y_i - \bar{y})^2}}.$$ [NP3546/20A] G02CCF.1 (d) The regression coefficient, b, and the regression constant, a: $$b = \frac{\sum_{i=1}^{n} w_i(x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} w_i(x_i - \bar{x})^2}, \quad a = \bar{y} - b\bar{x}.$$ (e) The sum of squares attributable to the regression, SSR, the sum of squares of deviations about the regression, SSD, and the total sum of squares, SST: $$SST = \sum_{i=1}^{n} w_i (y_i - \bar{y})^2; \quad SSD = \sum_{i=1}^{n} w_i (y_i - a - bx_i)^2; \quad SSR = SST - SSD.$$ (f) The degrees of freedom attributable to the regression, DFR, the degrees of freedom of deviations about the regression, DFD, and the total degrees of freedom, DFT: $$DFT = \sum_{i=1}^{n} w_i - 1; \quad DFD = \sum_{i=1}^{n} w_i - 2; \quad DFR = 1.$$ (g) The mean square attributable to the regression, MSR, and the mean square of deviations about the regression, MSD: $$MSR = SSR/DFR; \quad MSD = SSD/DFD.$$ (h) The F-value for the analysis of variance: $$F = MSR/MSD$$. (i) The standard error of the regression coefficient, se(b), and the standard error of the regression constant, se(a): $$se(b) = \sqrt{\frac{MSD}{\sum_{i=1}^{n} w_i (x_i - \bar{x})^2}}; \quad se(a) = \sqrt{MSD\left(\frac{1}{\sum_{i=1}^{n} w_i} + \frac{\bar{x}^2}{\sum_{i=1}^{n} w_i (x_i - \bar{x})^2}\right)}.$$ (j) The t-value for the regression coefficient, t(b), and the t-value for the regression constant, t(a): $$t(b) = \frac{b}{se(b)}; \quad t(a) = \frac{a}{se(b)}.$$ (k) The number of observations used in the calculations: $$n_c = \sum_{i=1}^n w_i.$$ ### 4 References Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley #### 5 Parameters 1: N – INTEGER Input On entry: the number, n, of pairs of observations. Constraint: N > 2. 2: X(N) - real array Input On entry: X(i) must contain x_i , for i = 1, 2, ..., n. 3: Y(N) - real array Input On entry: Y(i) must contain y_i , for i = 1, 2, ..., n. 4: XMISS – real Input On entry: the value xm which is to be taken as the missing value for the variable x. See Section 7. G02CCF.2 [NP3546/20A] 5: YMISS – real Input On entry: the value ym which is to be taken as the missing value for the variable y. See Section 7. ### 6: RESULT(21) – *real* array Output On exit: the following information: - RESULT(1) \bar{x} , the mean value of the independent variable, x; - RESULT(2) \bar{y} , the mean value of the dependent variable, y; - RESULT(3) s_x , the standard deviation of the independent variable, x; - RESULT(4) s_y , the standard deviation of the dependent variable, y; - RESULT(5) r, the Pearson product-moment correlation between the independent variable x and the dependent variable y - RESULT(6) b, the regression coefficient; - RESULT(7) a, the regression constant; - RESULT(8) se(b), the standard error of the regression coefficient; - RESULT(9) se(a), the standard error of the regression constant; - RESULT(10) t(b), the t-value for the regression coefficient; - RESULT(11) t(a), the t-value for the regression constant; - RESULT(12) SSR, the sum of squares attributable to the regression; - RESULT(13) DFR, the degrees of freedom attributable to the regression; - RESULT(14) MSR, the mean square attributable to the regression; - RESULT(15) F, the F-value for the analysis of variance; - RESULT(16) SSD, the sum of squares of deviations about the regression; - RESULT(17) DFD, the degrees of freedom of deviations about the regression; - RESULT(18) MSD, the mean square of deviations about the regression; - RESULT(19) SST, the total sum of squares; - RESULT(20) DFT, the total degrees of freedom; - RESULT(21) n_c , the number of observations used in the calculations. #### 7: IFAIL – INTEGER Input/Output On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details. On exit: IFAIL = 0 unless the routine detects an error (see Section 6). For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit. ### 6 Error Indicators and Warnings If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF). Errors or warnings detected by the routine: ``` IFAIL = 1 ``` On entry, $N \leq 2$. IFAIL = 2 After observations with missing values were omitted, two or fewer cases remained. IFAIL = 3 After observations with missing values were omitted, all remaining values of at least one of the variables x and y were identical. [NP3546/20A] G02CCF.3 ### 7 Accuracy The routine does not use *additional precision* arithmetic for the accumulation of scalar products, so there may be a loss of significant figures for large n. Users are warned of the need to exercise extreme care in their selection of missing values. The routine treats all values in the inclusive range $(1 \pm ACC) \times xm_j$, where xm_j is the missing value for variable j specified by the user, and ACC is a machine-dependent constant (see the Users' Note for your implementation) as missing values for variable j. The user must therefore ensure that the missing value chosen for each variable is sufficiently different from all valid values for that variable so that none of the valid values fall within the range indicated above. If, in calculating F or t(a) (see Section 3), the numbers involved are such that the result would be outside the range of numbers which can be stored by the machine, then the answer is set to the largest quantity which can be stored as a **real** variable, by means of a call to X02ALF. ### **8** Further Comments The time taken by the routine depends on n and the number of missing observations. The routine uses a two-pass algorithm. ### 9 Example The following program reads in eight observations on each of two variables, and then performs a simple linear regression with the first variable as the independent variable, and the second variable as the dependent variable, omitting cases involving missing values (0.0 for the first variable, 99.0 for the second). Finally the results are printed. ### 9.1 Program Text **Note:** the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations. ``` GO2CCF Example Program Text Mark 14 Revised. NAG Copyright 1989. .. Parameters .. INTEGER (N=8) PARAMETER NIN, NOUT INTEGER PARAMETER (NIN=5,NOUT=6) .. Local Scalars .. INTEGER XM, YM I, IFAIL .. Local Arrays .. real RESULT(21), X(N), Y(N) .. External Subroutines .. G02CCF .. Executable Statements .. WRITE (NOUT, *) 'G02CCF Example Program Results' Skip heading in data file READ (NIN, *) READ (NIN,*) (X(I),Y(I),I=1,N) WRITE (NOUT, *) WRITE (NOUT,*) ' Case Independent Dependent' WRITE (NOUT,*) 'number variable variable' WRITE (NOUT, *) WRITE (NOUT, 99999) (I, X(I), Y(I), I=1, N) WRITE (NOUT, *) Set up missing values XM = 0.0e0 YM = 99.0e0 IFAIL = 1 ``` G02CCF.4 [NP3546/20A] ``` CALL GO2CCF(N,X,Y,XM,YM,RESULT,IFAIL) IF (IFAIL.NE.O) THEN WRITE (NOUT, 99998) 'Routine fails, IFAIL =', IFAIL WRITE (NOUT, 99997) 'Mean of independent variable = ', RESULT(1) WRITE (NOUT, 99997) 'Mean of dependent variable = ', RESULT(2) WRITE (NOUT, 99997) 'Standard deviation of independent variable = ', RESULT(3) + WRITE (NOUT, 99997) 'Standard deviation of dependent variable = ', RESULT(4) WRITE (NOUT, 99997) 'Correlation coefficient = ', RESULT(5) WRITE (NOUT, *) WRITE (NOUT, 99997) = ', RESULT(6) 'Regression coefficient WRITE (NOUT, 99997) + 'Standard error of coefficient = ', RESULT(8) WRITE (NOUT, 99997) 't-value for coefficient = ', RESULT(10) WRITE (NOUT, *) WRITE (NOUT, 99997) = ', RESULT(7) 'Regression constant WRITE (NOUT, 99997) = ', RESULT(9) 'Standard error of constant WRITE (NOUT, 99997) 't-value for constant = ', RESULT(11) WRITE (NOUT, *) WRITE (NOUT,*) 'Analysis of regression table :-' WRITE (NOUT, *) WRITE (NOUT,*) +′ Sum of squares D.F. Mean square F-val Source +ue′ WRITE (NOUT, *) WRITE (NOUT,99996) 'Due to regression', (RESULT(I),I=12,15) WRITE (NOUT,99996) 'About regression', (RESULT(I), I=16,18) WRITE (NOUT,99996) 'Total ', (RESULT(I), I=19,20) WRITE (NOUT, *) WRITE (NOUT, 99995) 'Number of cases used = ', RESULT(21) END IF STOP 99999 FORMAT (1X, I4, 2F15.4) 99998 FORMAT (1X,A,I2) 99997 FORMAT (1X,A,F8.4) 99996 FORMAT (1X,A,F14.4,F8.0,2F14.4) 99995 FORMAT (1X,A,F3.0) END ``` ### 9.2 Program Data ``` G02CCF Example Program Data 1.0 20.0 0.0 15.5 4.0 28.3 7.5 45.0 2.5 24.5 0.0 10.0 10.0 99.0 5.0 31.2 ``` [NP3546/20A] G02CCF.5 ## 9.3 Program Results GO2CCF Example Program Results | Case
number | Independent
variable | t Dependent
variable | | | | |--------------------------------------|---|--|-----------------------|-----------------------------|---------| | 1
2
3
4
5
6
7
8 | 1.0000
0.0000
4.0000
7.5000
2.5000
0.0000
10.0000
5.0000 | 20.0000
15.5000
28.3000
45.0000
24.5000
10.0000
99.0000
31.2000 | | | | | Mean of
Standard
Standard | | variable
f independent varia
f dependent varia | =
able =
able = | | | | Standard | on coefficien
error of coe
for coefficie | efficient | | 3.7531
0.4409
8.5128 | | | Standard | on constant
error of con
for constant | nstant | = | 14.7878
2.0155
7.3370 | | | Analysis of regression table :- | | | | | | | Son | urce S | Sum of squares D.F | • | Mean square | F-value | | | egression
egression | 345.0940 1.
14.2860 3.
359.3800 4. | | 345.0940
4.7620 | 72.4682 | Number of cases used = 5. G02CCF.6 (last) [NP3546/20A]