
NAG Fortran Library Routine Document

F12FDF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F12FDF is an option setting routine in a suite of routines consisting of F12FDF, F12FAF, F12FBF,
F12FCF and F12FEF, and may be used to supply individual optional parameters to F12FBF and F12FCF.
The initialization routine F12FAF must have been called prior to calling F12FDF.

2 Specification

SUBROUTINE F12FDF (STR, ICOMM, COMM, IFAIL)

INTEGER ICOMM(*), IFAIL

double precision COMM(*)
CHARACTER*(*) STR

3 Description

F12FDF may be used to supply values for optional parameters to F12FBF and F12FCF. It is only
necessary to call F12FDF for those parameters whose values are to be different from their default values.
One call to F12FDF sets one parameter value.

Each optional parameter is defined by a single character string consisting of one or more items. The items
associated with a given option must be separated by spaces, or equals signs ¼½ �. Alphabetic characters
may be upper or lower case. The string

’Pointers = Yes’

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

(a) a mandatory keyword;

(b) a phrase that qualifies the keyword;

(c) a number that specifies an INTEGER or double precision value. Such numbers may be up to 16
contiguous characters in Fortran’s I, F, E or D format.

F12FDF does not have an equivalent routine from the ARPACK package which passes options by directly
setting values to scalar parameters or to specific elements of array arguments. F12FDF is intended to make
the passing of options more transparent and follows the same principle as the single option setting routines
in Chapter E04.

The setup routine F12FAF must be called prior to the first call to F12FDF and all calls to F12FDF must
preceed the first call to F12FBF, the reverse communication iterative solver.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 10.

4 References

Lehoucq R B (2001) Implicitly Restarted Arnoldi Methods and Subspace Iteration SIAM Journal on Matrix

Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

F12 – Large Scale Eigenproblems F12FDF

[NP3657/21] F12FDF.1



Lehoucq R B and Sorensen D C (1996) Deflation Techniques for an Implicitly Restarted Arnoldi Iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users’ Guide: Solution of Large-Scale

Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Parameters

1: STR – CHARACTER*(*) Input

On entry: a single valid option string (as described in Section 3 above and in Section 10).

2: ICOMMð�Þ – INTEGER array Communication Array

ICOMM, on initial entry, must remain unchanged following a call to the setup routine F12FAF.

3: COMMð�Þ – double precision array Communication Array

COMM, on initial entry, must remain unchanged following a call to the setup routine F12FAF.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, for users not familiar with this parameter the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The string passed in STR contains an ambiguous keyword.

IFAIL ¼ 2

The string passed in STR contains a keyword that could not be recognized.

IFAIL ¼ 3

The string passed in STR contains a second keyword that could not be recognized.

IFAIL ¼ 4

The initialization routine F12FAF has not been called or a communication array has become
corrupted.

7 Accuracy

Not applicable.

8 Further Comments

None.

F12FDF NAG Fortran Library Manual

F12FDF.2 [NP3657/21]



9 Example

The example solves Ax ¼ �Bx in Shifted Inverse mode, where A and B are obtained from the standard

central difference discretization of the one-dimensional Laplacian operator @2u
@x2

on 0; 1½ �, with zero Dirichlet

boundary conditions. Data is passed to and from the reverse communication routine F12FBF using
pointers to the communication array.

9.1 Program Text

* F12FDF Example Program Text
* Mark 21 Release. NAG Copyright 2004.
* .. Parameters ..

INTEGER LICOMM, NIN, NOUT
PARAMETER (LICOMM=134,NIN=5,NOUT=6)
INTEGER MAXN, MAXNCV, LDV
PARAMETER (MAXN=256,MAXNCV=30,LDV=MAXN)
INTEGER LCOMM
PARAMETER (LCOMM=3*MAXN+MAXNCV*MAXNCV+8*MAXNCV+60)
INTEGER IMON, IPOINT
PARAMETER (IMON=0,IPOINT=1)
DOUBLE PRECISION FOUR, ONE, SIX, TWO, ZERO
PARAMETER (FOUR=4.0D+0,ONE=1.0D+0,SIX=6.0D+0,TWO=2.0D+0,

+ ZERO=0.0D+0)
* .. Local Scalars ..

DOUBLE PRECISION H, R1, R2, SIGMA
INTEGER IFAIL, INFO, IREVCM, J, N, NCONV, NCV, NEV,

+ NITER, NSHIFT
* .. Local Arrays ..

DOUBLE PRECISION AD(MAXN), ADL(MAXN), ADU(MAXN), ADU2(MAXN),
+ COMM(LCOMM), D(MAXNCV,2), MX(MAXN), RESID(MAXN),
+ V(LDV,MAXNCV), X(MAXN)
INTEGER ICOMM(LICOMM), IPIV(MAXN)

* .. External Functions ..
DOUBLE PRECISION DNRM2
EXTERNAL DNRM2

* .. External Subroutines ..
EXTERNAL DCOPY, DGTTRF, DGTTRS, F12FAF, F12FBF, F12FCF,

+ F12FDF, F12FEF, MV
* .. Intrinsic Functions ..

INTRINSIC DBLE
* .. Executable Statements ..

WRITE (NOUT,*) ’F12FDF Example Program Results’
WRITE (NOUT,*)

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, NEV, NCV
IF (N.LT.1 .OR. N.GT.MAXN) THEN

WRITE (NOUT,99999) ’N is out of range: N = ’, N
ELSE IF (NCV.GT.MAXNCV) THEN

WRITE (NOUT,99999) ’NCV is out of range: NCV = ’, NCV
ELSE

IFAIL = 0
CALL F12FAF(N,NEV,NCV,ICOMM,LICOMM,COMM,LCOMM,IFAIL)

* We are solving a generalized problem
CALL F12FDF(’GENERALIZED’,ICOMM,COMM,IFAIL)

* Indicate that we are using the shift and invert mode.
CALL F12FDF(’SHIFTED INVERSE’,ICOMM,COMM,IFAIL)
IF (IPOINT.EQ.1) THEN

* Use pointers to Workspace in calculating matrix vector products
* rather than interfacing through the array X

CALL F12FDF(’POINTERS=YES’,ICOMM,COMM,IFAIL)
END IF

*
H = ONE/DBLE(N+1)
R1 = (FOUR/SIX)*H
R2 = (ONE/SIX)*H
SIGMA = ZERO
DO 20 J = 1, N

AD(J) = TWO/H - SIGMA*R1

F12 – Large Scale Eigenproblems F12FDF

[NP3657/21] F12FDF.3



ADL(J) = -ONE/H - SIGMA*R2
20 CONTINUE

CALL DCOPY(N,ADL,1,ADU,1)
CALL DGTTRF(N,ADL,AD,ADU,ADU2,IPIV,INFO)

*
IREVCM = 0
IFAIL = -1

40 CONTINUE
CALL F12FBF(IREVCM,RESID,V,LDV,X,MX,NSHIFT,COMM,ICOMM,IFAIL)
IF (IREVCM.NE.5) THEN

IF (IREVCM.EQ.-1) THEN
* Perform y <--- OP*x = inv[A-SIGMA*M]*M*x.

IF (IPOINT.EQ.0) THEN
CALL MV(N,X,MX)
CALL DCOPY(N,MX,1,X,1)
CALL DGTTRS(’N’,N,1,ADL,AD,ADU,ADU2,IPIV,X,N,INFO)

ELSE
CALL MV(N,COMM(ICOMM(1)),COMM(ICOMM(2)))
CALL DGTTRS(’N’,N,1,ADL,AD,ADU,ADU2,IPIV,COMM(ICOMM(2)

+ ),N,INFO)
END IF

ELSE IF (IREVCM.EQ.1) THEN
* Perform y <-- OP*x = inv[A-sigma*M]*M*x;
* M*x has been saved in COMM(ICOMM(3)) or MX.

IF (IPOINT.EQ.0) THEN
CALL DCOPY(N,MX,1,X,1)
CALL DGTTRS(’N’,N,1,ADL,AD,ADU,ADU2,IPIV,X,N,INFO)

ELSE
CALL DCOPY(N,COMM(ICOMM(3)),1,COMM(ICOMM(2)),1)
CALL DGTTRS(’N’,N,1,ADL,AD,ADU,ADU2,IPIV,COMM(ICOMM(2)

+ ),N,INFO)
END IF

ELSE IF (IREVCM.EQ.2) THEN
* Perform y <--- M*x.

IF (IPOINT.EQ.0) THEN
CALL MV(N,X,MX)

ELSE
CALL MV(N,COMM(ICOMM(1)),COMM(ICOMM(2)))

END IF
ELSE IF (IREVCM.EQ.4 .AND. IMON.NE.0) THEN

* Output monitoring information
CALL F12FEF(NITER,NCONV,D,D(1,2),ICOMM,COMM)
WRITE (6,99998) NITER, NCONV, DNRM2(NEV,D(1,2),1)

END IF
GO TO 40

END IF
IF (IFAIL.EQ.0) THEN

* Post-Process using F12FCF to compute eigenvalues/values.
CALL F12FCF(NCONV,D,V,LDV,SIGMA,RESID,V,LDV,COMM,ICOMM,

+ IFAIL)
WRITE (NOUT,99996) NCONV, SIGMA
DO 60 J = 1, NCONV

WRITE (NOUT,99995) J, D(J,1)
60 CONTINUE

ELSE
WRITE (NOUT,99997) IFAIL

END IF
END IF
STOP

*
99999 FORMAT (1X,A,I5)
99998 FORMAT (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’,

+ ’f estimates =’,E16.8)
99997 FORMAT (1X,’ NAG Routine F12FBF Returned with IFAIL = ’,I6)
99996 FORMAT (1X,/’ The ’,I4,’ Ritz values of closest to ’,F8.4,’ are:’,

+ /)
99995 FORMAT (1X,I8,5X,F12.4)

END
*

SUBROUTINE MV(N,V,W)
* .. Parameters ..

F12FDF NAG Fortran Library Manual

F12FDF.4 [NP3657/21]



DOUBLE PRECISION ONE, FOUR, SIX
PARAMETER (ONE=1.0D+0,FOUR=4.0D+0,SIX=6.0D+0)

* .. Scalar Arguments ..
INTEGER N

* .. Array Arguments ..
DOUBLE PRECISION V(N), W(N)

* .. Local Scalars ..
DOUBLE PRECISION H
INTEGER J

* .. External Subroutines ..
EXTERNAL DSCAL

* .. Intrinsic Functions ..
INTRINSIC DBLE

* .. Executable Statements ..
H = ONE/(DBLE(N+1)*SIX)
W(1) = FOUR*V(1) + V(2)
DO 20 J = 2, N - 1

W(J) = V(J-1) + FOUR*V(J) + V(J+1)
20 CONTINUE

J = N
W(J) = V(J-1) + FOUR*V(J)
CALL DSCAL(N,H,W,1)
RETURN
END

9.2 Program Data

F12FDF Example Program Data
100 4 10 : Values for N NEV and NCV

9.3 Program Results

F12FDF Example Program Results

The 4 Ritz values of closest to 0.0000 are:

1 9.8704
2 39.4912
3 88.8909
4 158.1175

10 Optional Parameters

Several optional parameters for the computational routines F12FBF and F12FCF define choices in the
problem specification or the algorithm logic. In order to reduce the number of formal parameters of
F12FBF and F12FCF these optional parameters have associated default values that are appropriate for most
problems. Therefore, the user need only specify those optional parameters whose values are to be different
from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 10.1.

Optional parameters may be specified by calling F12FDF prior to a call to F12FBF, but after a call to
F12FAF. One call is necessary for each optional parameter.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by F12FBF and F12FCF (unless they define invalid values) and so
remain in effect for subsequent calls unless altered by the user.

10.1 Optional parameter checklist and default values

The following list gives the valid options. For each option, we give the keyword, any essential optional
qualifiers and the default value. A definition for each option can be found in Section 10.2. The minimum
abbreviation of each keyword is underlined. The qualifier may be omitted. The letters i and r denote
INTEGER and double precision values required with certain options. The number � is a generic notation
for machine precision (see X02AJF).

F12 – Large Scale Eigenproblems F12FDF

[NP3657/21] F12FDF.5



Optional Parameters Default Values

Advisory Default ¼ the value returned by X04ABF
Both Ends
Buckling
Cayley
Defaults
Exact Shifts Default ¼ Exact Shifts
Generalized
Initial Residual
Iteration Limit Default ¼ 300
Largest Algebraic
Largest Magnitude Default ¼ Largest Magnitude
List Default ¼ Nolist
Monitoring Default ¼ �1
Nolist
Pointers Default ¼ No
Print Level Default ¼ 0
Random Residual Default ¼ Random Residual
Regular Default ¼ Regular
Regular Inverse
Shifted Inverse
Smallest Algebraic
Smallest Magnitude
Standard Default ¼ Standard
Supplied Shifts
Tolerance Default ¼ �
Vectors Default ¼ Schur

10.2 Description of the Optional Parameters

Advisory i Default ¼ the value returned by X04ABF

The output channel for advisory messages.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Exact Shifts Default ¼ Exact Shifts
Supplied Shifts

During the Lanczos iterative process, shifts are applied internally as part of the implicit restarting scheme.
The shift strategy used by default and selected by the option Exact Shifts is strongly recommended over
the alternative option Supplied Shifts (see Lehoucq et al. (1998) for details of shift strategies).

If Exact Shifts are used then these are computed internally by the algorithm in the implicit restarting
scheme.

If Supplied Shifts are used then, during the Lanczos iterative process, you must supply shifts through
array arguments of F12FBF; this option should only be used by experienced users since this requires some
algorithmic knowledge and because more operations are usually required than for the implicit shift scheme.

If Supplied Shifts are used then, during the Lanczos iterative process, you must supply shifts through
array arguments of F12FBF when F12FBF returns with IREVCM ¼ 3; the real and imaginary parts of the
shifts are returned in X and MX respectively (or in COMM when the option Pointers ¼ Yes is set). This
option should only be used by experienced users since this requires some algorithmic knowledge and
because more operations are usually required than for the implicit shift scheme. Details on the use of
explicit shifts and further references on shift strategies are available in Lehoucq et al. (1998).

F12FDF NAG Fortran Library Manual

F12FDF.6 [NP3657/21]



Iteration Limit i Default ¼ 300

The limit on the number of Lanczos iterations that can be performed before F12FBF exits. If not all
requested eigenvalues have converged to within Tolerance and the number of Lanczos iterations has
reached this limit then F12FBF exits with a error; F12FCF can still be called subsequently to return the
number of converged eigenvalues, the converged eigenvalues and, if requested, the corresponding
eigenvectors.

Largest Magnitude Default ¼ Largest Magnitude
Largest Algebraic
Smallest Magnitude
Smallest Algebraic
Both Ends

The Lanczos iterative method converges on a number of eigenvalues with given properties. The default is
for F12FBF to compute the eigenvalues of largest magnitude using option Largest Magnitude.
Alternatively, eigenvalues may be chosen which have Largest Algebraic part Smallest Magnitude, or
Smallest Algebraic part; or eigenvalues which are from Both Ends of the algebraic spectrum.

Note that these options select the eigenvalue properties for eigenvalues of OP (and B for Generalized
problems), the linear operator determined by the computational mode and problem type.

List Default ¼ Nolist
Nolist

Normally each optional parameter specification is not printed to the advisory channel as it is supplied. List
may be used to enable printing and Nolist may be used to suppress the printing.

Monitoring i Default ¼ �1

If i > 0, monitoring information is output to channel number i during the solution of each problem; this
may be the same as the Advisory channel number. The type of information produced is dependent on the
value of Print Level, see the description of Print Level in this section for details of the information
produced. Please see X04ACF to associate a file with a given channel number.

Pointers Default ¼ No

During the iterative process and reverse communication calls to F12FBF, required data can be
communicated to and from F12FBF in one of two ways. When Pointers ¼ No is selected (the default)
then the array arguments X and MX are used to supply you with required data and used to return
computed values back to F12FBF. For example, when IREVCM ¼ 1 F12FBF returns the vector x in X
and the matrix-vector product Bx in MX and expects the result of the linear operation OP xð Þ to be
returned in X.

If Pointers ¼ Yes is selected then the data is passed through sections of the array argument COMM. The
section corresponding to X when Pointers ¼ No begins at a location given by the first element of
ICOMM; similarly the section corresponding to MX begins at a location given by the second element of
ICOMM. This option allows F12FBF to perform fewer copy operations on each intermediate exit and
entry, but can also lead to less elegant code in the calling program.

Print Level i Default ¼ 0

This controls the amount of printing produced by F12FDF as follows.

¼ 0 No output except error messages. If you want to suppress all output, set Print Level ¼ 0.
� 0 The set of selected options.
¼ 2 Problem and timing statistics on final exit from F12FBF.
� 5 A single line of summary output at each Lanczos iteration.
� 10 If Monitoring > 0, then at each iteration, the length and additional steps of the current Lanczos

factorization and the number of converged Ritz values; during re-orthogonalisation, the norm of
initial/restarted starting vector; on a final Lanczos iteration, the number of update iterations taken,
the number of converged eigenvalues, the converged eigenvalues and their Ritz estimates.

F12 – Large Scale Eigenproblems F12FDF

[NP3657/21] F12FDF.7



� 20 Problem and timing statistics on final exit from F12FBF. If Monitoring > 0, then at each
iteration, the number of shifts being applied, the eigenvalues and estimates of the symmetric
tridiagonal matrix H, the size of the Lanczos basis, the wanted Ritz values and associated Ritz
estimates and the shifts applied; vector norms prior to and following re-orthogonalisation.

� 30 If Monitoring > 0, then on final iteration, the norm of the residual; when computing the Schur
form, the eigenvalues and Ritz estimates both before and after sorting; for each iteration, the norm
of residual for compressed factorization and the symmetric tridiagonal matrix H; during re-
orthogonalisation, the initial/restarted starting vector; during the Lanczos iteration loop, a restart is
flagged and the number of the residual requiring iterative refinement; while applying shifts, some
indices.

� 40 If Monitoring > 0, then during the Lanczos iteration loop, the Lanczos vector number and norm
of the current residual; while applying shifts, key measures of progress and the order of H; while
computing eigenvalues of H, the last rows of the Schur and eigenvector matrices; when computing
implicit shifts, the eigenvalues and Ritz estimates of H.

� 50 During Lanczos iteration loop: norms of key components and the active column of H, norms of
residuals during iterative refinement, the final symmetric tridiagonal matrix H; while applying
shifts: number of shifts, shift values, block indices, updated tridiagonal matrix H; while computing
eigenvalues of H: the diagonals of H, the computed eigenvalues and Ritz estimates.

Note that setting Print Level � 30 can result in very lengthy Monitoring output.

Random Residual Default ¼ Random Residual
Initial Residual

To begin the Lanczos iterative process, F12FBF requires an initial residual vector. By default F12FBF
provides its own random initial residual vector; this option can also be set using Random Residual.
Alternatively, you can supply an initial residual vector (perhaps from a previous computation) to F12FBF
through the array argument RESID; this option can be set using Random Residual.

Regular Default ¼ Regular
Regular Inverse
Shifted Inverse
Buckling
Cayley

These options define the computational mode which in turn defines the form of operation OP xð Þ to be
performed when F12FBF returns with IREVCM ¼ �1 or IREVCM ¼ 1 and the matrix-vector product
Bx when F12FBF returns with IREVCM ¼ 2.

Given a Standard eigenvalue problem in the form Ax ¼ �x then the following modes are available with
the appropriate operator OP xð Þ.
Regular OP ¼ A
Shifted Inverse OP ¼ A� �Ið Þ�1

where � is real

Given a Generalized eigenvalue problem in the form Ax ¼ �Bx then the following modes are available
with the appropriate operator OP xð Þ.
Regular Inverse OP ¼ B�1A
Shifted Inverse OP ¼ A� �Bð Þ�1B, where � is real
Buckling OP ¼ B� �Að Þ�1A, where � is real
Cayley OP ¼ A� �Bð Þ�1 Aþ �Bð Þ, where � is real

Standard Default ¼ Standard
Generalized

The problem to be solved is either a standard eigenvalue problem, Ax ¼ �x, or a generalized eigenvalue
problem, Ax ¼ �Bx. The option Standard should be used when a standard eigenvalue problem is being
solved and the option Generalized should be used when a generalized eigenvalue problem is being solved.

F12FDF NAG Fortran Library Manual

F12FDF.8 [NP3657/21]



Tolerance r Default ¼ �

An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is within
Tolerance relative to the magnitude of the eigenvalue.

Vectors Default ¼ Schur

The routine F12FCF can optionally compute the Schur vectors and/or the eigenvectors corresponding to
the converged eigenvalues. To turn off computation of any vectors the option Vectors ¼ None should be
set. To compute only the Schur vectors (at very little extra cost), the option Vectors ¼ Schur should be
set and these will be returned in the array argument V of F12FCF. To compute the eigenvectors (Ritz
vectors) corresponding to the eigenvalue estimates, the option Vectors ¼ Ritz should be set and these will
be returned in the array argument Z of F12FCF; if the array argument V is passed to F12FCF in place of Z
then the Schur vectors in V are overwritten by the eigenvectors computed by F12FCF.

F12 – Large Scale Eigenproblems F12FDF

[NP3657/21] F12FDF.9 (last)


	F12FDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	STR
	ICOMM
	COMM
	IFAIL

	6 Error Indicators and Warnings
	 = 1
	 = 2
	 = 3
	 = 4

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Optional Parameters
	10.1 Optional parameter checklist and default values
	10.2 Description of the Optional Parameters
	advisory
	defaults
	exactshifts
	suppliedshifts
	iterationlimit
	largestmag
	largestalg
	smallestmag
	smallestalg
	bothends
	list
	nolist
	monitoring
	pointers
	printlevel
	randomresid
	initialresid
	regular
	regularinv
	shiftedinv
	buckling
	cayley
	standard
	generalized
	tolerance
	vectors



	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



