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1 Scope of the Chapter

This chapter provides routines for computing some eigenvalues and eigenvectors of large-scale (sparse)
standard and generalized eigenvalue problems. It provides routines for:

– solution of symmetric eigenvalue problems

– solution of nonsymmetric eigenvalue problems

– solution of generalized symmetric-definite eigenvalue problems

– solution of generalized non-symmetric eigenvalue problems

Routines are provided for both real and complex data.

The routines in this chapter have all been derived from the ARPACK software suite (see Lehoucq et al.

(1998)), a collection of Fortran 77 subroutines designed to solve large scale eigenvalue problems. The
interfaces provided in this chapter have been chosen to combine ease of use with the flexibility of the
original ARPACK software. The underlying iterative methods and algorithms remain essentially the same
as those in ARPACK and described fully in Lehoucq et al. (1998).

The algorithms used are based upon an algorithmic variant of the Arnoldi process called the Implicitly
Restarted Arnoldi Method. For symmetric matrices, this reduces to a variant of the Lanczos process called
the Implicitly Restarted Lanczos Method. These variants may be viewed as a synthesis of the Arnoldi/
Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale problems. For
many standard problems, a matrix factorization is not required. Only the action of the matrix on a vector
is needed.

2 Background to the Problems

This section is only a brief introduction to the solution of large-scale eigenvalue problems. For a more
detailed discussion see for example Saad (1992), or Lehoucq (1995) in addition to Lehoucq et al. (1998).
The basic factorization techniques and definitions of terms used for the different problem types are given in
Section 2 in the F08 Chapter Introduction.

2.1 Sparse Matrices and their Storage

A matrix A may be described as sparse if the number of zero elements is so large that it is worthwhile
using algorithms which avoid computations involving zero elements.

If A is sparse, and the chosen algorithm requires the matrix coefficients to be stored, a significant saving in
storage can often be made by storing only the non-zero elements. A number of different formats may be
used to represent sparse matrices economically. These differ according to the amount of storage required,
the amount of indirect addressing required for fundamental operations such as matrix–vector products, and
their suitability for vector and/or parallel architectures. For a survey of some of these storage formats see
Barrett et al. (1994).

Most of the routines in this chapter have been designed to be independent of the matrix storage format.
This allows users to choose their own preferred format, or to avoid storing the matrix altogether. Other
routines are general purpose, which are easier to use, but are based on fixed storage formats. One such
format is currently provided. This is the banded coordinate storage format as used in Chapters F07 and
F08 (LAPACK) for storing general banded matrices.

2.2 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors, z 6¼ 0,
such that

Az ¼ �z, A ¼ AT , where A is real.

For the Hermitian eigenvalue problem we have

Az ¼ �z, A ¼ AH , where A is complex.

For both problems the eigenvalues � are real.
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The basic task of the symmetric eigenproblem routines is to compute some of the values of � and,
optionally, corresponding vectors z for a given matrix A. For example, we may wish to obtain the first ten
eigenvalues of largest magnitude, of a large sparse matrix A.

2.3 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az ¼ �Bz, ABz ¼ �z,
and BAz ¼ �z, where A and B are real symmetric or complex Hermitian and B is positive-definite. Each
of these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky

factorization of B as either B ¼ LLT or B ¼ UTU (LLH or UHU in the Hermitian case).

With B ¼ LLT , we have

Az ¼ �Bz) L�1AL�T
� �

LTz
� �

¼ � LTz
� �

.

Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix

C ¼ L�1AL�T and y ¼ LTz. In the complex case C is Hermitian with C ¼ L�1AL�H and y ¼ LHz.

The basic task of the generalized symmetric eigenproblem routines is to compute some of the values of �
and, optionally, corresponding vectors z for a given matrix A. For example, we may wish to obtain the
first ten eigenvalues of largest magnitude, of a large sparse matrix pair A and B.

2.4 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors,
v 6¼ 0, such that

Av ¼ �v.

More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u 6¼ 0 satisfying

uTA ¼ �uT uHA ¼ �uH when u is complex
� �

is called a left eigenvector of A.

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as

A ¼ ZTZT ,

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2 diagonal
blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the complex
case, the Schur factorization is

A ¼ ZTZH ,

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 � k � n), the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of T .
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of T .

The two basic tasks of the nonsymmetric eigenvalue routines are to compute, for a given matrix A, some
values of � and, if desired, their associated right eigenvectors v, and the Schur factorization.

2.5 Generalized Nonsymmetric Eigenvalue Problem

The generalized nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding
eigenvectors, v 6¼ 0, such that

Av ¼ �Bv, ABv ¼ �v, and BAv ¼ �v.
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More precisely, a vector v as just defined is called a right eigenvector of the matrix pair A;Bð Þ, and a
vector u 6¼ 0 satisfying

uTA ¼ �uTB uHA ¼ �uHB when u is complex
� �

is called a left eigenvector of the matrix pair A;Bð Þ.

2.6 Iterative Methods

Iterative methods for the solution of the standard eigenproblem

Ax ¼ �x ð1Þ
approach the solution through a sequence of approximations until some user-specified termination criterion
is met or until some predefined maximum number of iterations has been reached. The number of iterations
required for convergence is not generally known in advance, as it depends on the accuracy required, and
on the matrix A, its sparsity pattern, conditioning and eigenvalue spectrum.

3 Recommendations on Choice and Use of Available Routines

Note: please refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Types of Routine Available

The routines available in this chapter divide essentially into three suites of basic reverse communication
routines and some general purpose routines for banded systems.

Basic routines are grouped in suites of five, and implement the underlying iterative method. Each suite
comprises a setup routine, an options setting routine, a solver routine, a routine to return additional
monitoring information and a post-processing routine. The solver routine is independent of the matrix
storage format (indeed the matrix need not be stored at all) and the type of preconditioner. It uses reverse
communication, i.e., it returns repeatedly to the calling program with the parameter IREVCM set to
specified values which require the calling program to carry out a specific task (either to compute a matrix-
vector product or to solve the preconditioning equation), to signal the completion of the computation or to
allow the calling program to monitor the solution. Reverse communication has the following advantages:

(i) Maximum flexibility in the representation and storage of sparse matrices. All matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
enough flexibility to cope with all types of storage schemes and sparsity patterns. This also applies to
preconditioners.

(ii) Enhanced user interaction: the progress of the solution can be closely monitored by the user and tidy
or immediate termination can be requested. This is useful, for example, when alternative termination
criteria are to be employed or in case of failure of the external routines used to perform matrix
operations.

At present there are suites of basic routines for real symmetric and nonsymmetric systems, and for complex
systems.

General purpose routines call basic routines in order to provide easy-to-use routines for particular sparse
matrix storage formats. They are much less flexible than the basic routines, but do not use reverse
communication, and may be suitable in many cases.

The structure of this chapter has been designed to cater for as many types of application as possible. If a
general purpose routine exists which is suitable for a given application you are recommended to use it. If
you then decide you need some additional flexibility it is easy to achieve this by using basic and utility
routines which reproduce the algorithm used in the general pupose routine, but allow more access to
algorithmic control parameters and monitoring.

3.2 Iterative Methods for Real Nonsymmetric and Complex Eigenvalue Problems

The suite of basic routines F12AAF, F12ABF, F12ACF, F12ADF and F12AEF implements the iterative
solution of real nonsymmetric eigenvalue problems, finding estimates for a specified spectrum of
eigenvalues. These eigenvalue estimates are often referred to as Ritz values and the error bounds obtained
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are referred to as the Ritz estimates. These routines allow a choice of termination criteria and many other
options for specifying the problem type, allow monitoring of the solution process, and can return Ritz
estimates of the calculated Ritz values of the problem A.

For complex matrices there is an equivalent suite of routines. F12ANF, F12APF, F12AQF, F12ARF and
F12ASF are the basic routines which implement corresponding methods used for real nonsymmetric
systems.

3.3 Iterative Methods for Real Symmetric Eigenvalue Problems

The suite of basic routines F12FAF, F12FBF, F12FCF, F12FDF and F12FEF implement a Lanczos method
for the iterative solution of the real symmetric eigenproblem.

3.4 Direct Methods

Chapter F12 does not currently provide any routines specifically designed for direct solution of large-scale
eigenproblems.

Some routines specifically designed for direct solution of sparse linear eigenproblems can currently be
found in Chapters F02 and F08. In particular, the following routines allow the direct solution of real
symmetric systems:

Band F08UAF (DSBGV) and F02SDF
Sparse F02FJF

4 General Use of Routines

This section will describe the complete structure of the reverse communication interfaces contained in this
chapter. Numerous computational modes are available, including several shift-invert strategies designed to
accelerate convergence. Two of the more sophisticated modes will be described in detail. The remaining
ones are quite similar in principle, but require slightly different tasks to be performed with the reverse
communication interface.

This chapter is structured as follows. The naming conventions used in this chapter, and the data types
available are described in Section 4.1, Spectral transformations are discussed in Section 4.2. Spectral
transformations are usually extremely effective but there are a number of problem dependent issues that
determine which one to use. In Section 4.3 we describe the reverse communication interface needed to
exercise the various shift-invert options. Each shift-invert option is specified as a computational mode and
all of these are summarised in the remaining sections. There is a subsection for each problem type and
hence these sections are quite similar and repetitive. Once the basic idea is understood, it is probably best
to turn directly to the subsection that describes the problem setting that is most interesting to you.

Perhaps the easiest way to rapidly become acquainted with the modes in this chapter is to run each of the
example programs which use the various modes. These may be used as templates and adapted to solve
specific problems.

4.1 Naming Conventions

Routines for solving nonsymmetric (real and complex) eigenvalue problems have as first letter after the
chapter name, the letter ‘A’, e.g., F12ABF; equivalent routines for symmetric eigenvalue problems will
have this letter replaced by the letter ‘F’, e.g., F12FBF. For the letter following this, routines for real
eigenvalue problems will have letters in the range ‘A to M’ while those for complex eigenvalue problems
will have letters correspondingly shifted into the range ‘N to Z’; so, for example, the complex equivalent
of F12ADF is F12ARF, while the real symmetric equivalent is F12FDF.

A suite of five routines are named consecutively, e.g., F12AAF, F12ABF, F12ACF, F12ADF and F12AEF.
Each general purpose routine has its own initialization routine, but uses the option setting routine from the
suite relevant to the problem type. Thus each general purpose routine can be viewed as belonging to a
suite of three routines, even though only two routines will be named consecutively. For example, F12AFF,
F12AGF and F12ADF represent the suite of routines for solving a banded real symmetric eigenvalue
problem.
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4.2 Shift and Invert Spectral Transformations

The most general problem that may be solved here is to compute a few selected eigenvalues and
corresponding eigenvectors for

Ax ¼ �Bx, where A and B are real or complex n� n matrices. ð2Þ
The shift and invert spectral transformation is used to enhance convergence to a desired portion of the
spectrum. If x; �ð Þ is an eigen-pair for A;Bð Þ and � 6¼ � then

A� �Bð Þ�1Bx ¼ �x, where � ¼ 1

�� �
ð3Þ

This transformation is effective for finding eigenvalues near � since the n� eigenvalues of

C � A� �Bð Þ�1B that are largest in magnitude correspond to the n� eigenvalues �j of the original

problem that are nearest to the shift � in absolute value. These transformed eigenvalues of largest
magnitude are precisely the eigenvalues that are easy to compute with a Krylov method. (See Barrett et al.
(1994)). Once they are found, they may be transformed back to eigenvalues of the original problem. The
direct relation is

�j ¼ �þ 1

�j

and the eigenvector xj associated with �j in the transformed problem is also an eigenvector of the original

problem corresponding to �j. Usually the Arnoldi process will rapidly obtain good approximations to the

eigenvalues of C of largest magnitude. However, to implement this transformation, you must provide
means to solve linear systems involving A� �B either with a matrix factorization or with an iterative
method.

In general, C will be non-Hermitian even if A and B are both Hermitian. However, this is easily
remedied. The assumption that B is Hermitian positive definite implies that the bilinear form

x; yh i � xHBy

is an inner product. If B is positive semi-definite and singular, then a semi-inner product results. This is a
weighted B-inner product and vectors x, y are called B-orthogonal if x; yh i ¼ 0. It is easy to show that if
A is Hermitian (self-adjoint) then C is Hermitian self-adjoint with respect to this B-inner product (meaning
Cx; yh i ¼ x;Cyh i for all vectors x, y). Therefore, symmetry will be preserved if we force the computed
basis vectors to be orthogonal in this B-inner product. Implementing this B-orthogonality requires you to
provide a matrix-vector product Bv on request along with each application of C. In the following sections
we shall discuss some of the more familiar transformations to the standard eigenproblem. However, when
B is positive (semi)definite, we recommend using the shift-invert spectral transformation with B-inner
products if at all possible. This is a far more robust transformation when B is ill-conditioned or singular.
With a little extra manipulation (provided automatically in the post-processing routines) the semi-inner
product induced by B prevents corruption of the computed basis vectors by roundoff-error associated with
the presence of infinite eigenvalues. These very ill-conditioned eigenvalues are generally associated with a
singular or highly ill-conditioned B. A detailed discussion of this theory may be found in Chapter 4 of
Lehoucq et al. (1998).

Shift-invert spectral transformations are very effective and should even be used on standard problems,
B ¼ I, whenever possible. This is particularly true when interior eigenvalues are sought or when the
desired eigenvalues are clustered. Roughly speaking, a set of eigenvalues is clustered if the maximum
distance between any two eigenvalues in that set is much smaller than the minimum distance between these
eigenvalues and any other eigenvalues of A;Bð Þ.
If you have a generalized problem B 6¼ I, then you must provide a way to solve linear systems with either
A, B or a linear combination of the two matrices in order to use the reverse communication suites in this
chapter. In this case, a sparse direct method should be used to factor the appropriate matrix whenever
possible. The resulting factorization may be used repeatedly to solve the required linear systems once it
has been obtained. If instead you decide to use an iterative method, the accuracy of the solutions must be
commensurate with the convergence tolerance used for the Arnoldi iteration. A slightly more stringent
tolerance is needed relative to the desired accuracy of the eigenvalue calculation.
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The main drawback with using the shift-invert spectral transformation is that the coefficient matrix A� �B
is typically indefinite in the Hermitian case and has zero-valued eigenvalues in the non-Hermitian case.
These are often the most difficult situations for iterative methods and also for sparse direct methods.

The decision to use a spectral transformation on a standard eigenvalue problem B ¼ I or to use one of the
simple modes is problem dependent. The simple modes have the advantage that you only need to supply a
matrix vector product Av. However, this approach is usually only successful for problems where extremal
non-clustered eigenvalues are sought. In non-Hermitian problems, extremal means eigenvalues near the
boundary of the spectrum of A. For Hermitian problems, extremal means eigenvalues at the left or right
end points of the spectrum of A. The notion of non-clustered (or well separated) is difficult to define
without going into considerable detail. A simplistic notion of a well-separated eigenvalue �j for a

Hermitian problem would be �i � �j

�� �� > � �n � �1k k for all j 6¼ i with � � �, where �1 and �n are the

smallest and largest algebraically. Unless a matrix vector product is quite difficult to code or extremely
expensive computationally, it is probably worth trying to use the simple mode first if you are seeking
extremal eigenvalues.

The remainder of this section discusses additional transformations that may be applied to convert a
generalized eigenproblem to a standard eigenproblem. These are appropriate when B is well conditioned
(Hermitian or non-Hermitian).

4.2.1 B is Hermitian positive definite

If B is Hermitian positive definite and well conditioned ( Bk k B�1
�� �� is of modest size), then computing the

Cholesky factorization B ¼ LLH and converting equation (2) to

L�1AL�H
� �

y ¼ �y, where LHx ¼ y

provides a transformation to a standard eigenvalue problem. In this case, a request for a matrix vector
product would be satisfied with the following three steps:

1. Solve LHz ¼ v for z,

2. Matrix-vector multiply z Az,

3. Solve Lw ¼ z for w.

Upon convergence, a computed eigenvector y for L�1AL�H
� �

is converted to an eigenvector x of the

original problem by solving the the triangular system LHx ¼ y. This transformation is most appropriate
when A is Hermitian, B is Hermitian positive definite and extremal eigenvalues are sought. This is

because L�1AL�H
� �

will be Hermitian when A is.

If A is Hermitian positive definite and the smallest eigenvalues are sought, then it would be best to reverse
the roles of A and B in the above description and ask for the largest algebraic eigenvalues or those of

largest magnitude. Upon convergence, a computed eigenvalue �̂ would then be converted to an eigenvalue

of the original problem by the relation � 1

�̂
.

4.2.2 B is not Hermitian positive semi-definite

If neither A nor B is Hermitian positive semi-definite, then a direct transformation to standard form is
required. One simple way to obtain a direct transformation of equation (2) to a standard eigenvalue

problem Cx ¼ �x is to multiply on the left by B�1 which results in C ¼ B�1A. Of course, you should
not perform this transformation explicitly since it will most likely convert a sparse problem into a dense
one. If possible, you should obtain a direct factorization of B and when a matrix-vector product involving
C is called for, it may be accomplished with the following two steps:

Matrix-vector multiply z Av,

Solve Bw ¼ z for w.

Several problem dependent issues may modify this strategy. If B is singular or if you are interested in

eigenvalues near a point � then you may choose to work with C � A� �Bð Þ�1B but without using the B-
inner products discussed previously. In this case you will have to transform the converged eigenvalues of
C to eigenvalues of the original problem.
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4.3 Reverse Communication and Shift-invert Modes

The reverse communication interface routine for real nonsymmetric problems is F12ABF; for complex
problems is F12APF; and for real symmetric problems is F12FBF. First the reverse communication loop
structure will be described and then the details and nuances of the problem set up will be discussed. We
shall use the symbol OP for the operator that is applied to vectors in the Arnoldi/Lanczos process and B
will stand for the matrix to use in the weighted inner product described previously. For the shift-invert

spectral transformation mode OP denotes A� �Bð Þ�1B. They will stand for different matrices in each of
the various modes.

The basic idea is to set up a loop that repeatedly call one of F12ABF, F12APF and F12FBF. On each
return, you must either apply OP or B to a specified vector or exit the loop depending upon the value
returned in the reverse communication parameter IREVCM.

4.3.1 Shift and invert on a generalized eigenproblem

The example program in Section 9 of the document for F12AEF illustrates the reverse communication loop
for F12ABF in shift-invert mode for a generalized non-symmetric eigenvalue problem. This loop structure
will be identical for the symmetric problem calling F12FBF. The loop structure is also identical for the
complex arithmetic subroutine F12APF.

In the example, the matrix B is assumed to be symmetric and positive semi-definite. In the loop structure,
you will have to supply a routine to obtain a matrix factorization of A� �Bð Þ that may repeatedly be used
to solve linear systems. Moreover, a routine needs to be provided to perform the matrix-vector product
z ¼ Bv and a routine is required to solve linear systems of the form A� �Bð Þw ¼ z as needed using the
previously computed factorization.

When convergence has taken place (indicated by IREVCM ¼ 5 and IFAIL ¼ 0), the reverse
communication loop will be exited. Then, post-processing using the relevant routine from F12ACF,
F12AQF and F12FCF must be done to recover the eigenvalues and corresponding eigenvectors of the
original problem. When operating in shift-invert mode, the eigenvalue selection option is normally set to
Largest Magnitude. The post-processing routine is then used to convert the converged eigenvalues of OP
to eigenvalues of the original problem (2). Also, when B is singular or ill-conditioned, the post-processing
routine takes steps to purify the eigenvectors and rid them of numerical corruption from eigenvectors
corresponding to near-infinite eigenvalues. These procedures are performed automatically when operating
in any one of the computational modes described above and later in this section.

You may wish to construct alternative computational modes using spectral transformations that are not
addressed by any of the modes specified in this chapter. The reverse communication interface will easily
accommodate these modifications. However, it will most likely be necessary to construct explicit
transformations of the eigenvalues of OP to eigenvalues of the original problem in these situations.

4.3.2 Using the computational modes

The problem set up is similar for all of the available computational modes. In the previous section, a
detailed description of the reverse communication loop for a specific mode (Shift-invert for a Generalized
Problem) was given. To use this or any of the other modes listed below, you are strongly urged to modify
one of the example programs.

The first thing to decide is whether the problem will require a spectral transformation. If the problem is
generalized, B 6¼ I, then a spectral transformation will be required (see Section 4.2). Such a
transformation will most likely be needed for a standard problem if the desired eigenvalues are in the
interior of the spectrum or if they are clustered at the desired part of the spectrum. Once this decision has
been made and OP has been specified, an efficient means to implement the action of the operator OP on a
vector must be devised. The expense of applying OP to a vector will of course have direct impact on
performance.

Shift-invert spectral transformations may be implemented with or without the use of a weighted B-inner
product. The relation between the eigenvalues of OP and the eigenvalues of the original problem must
also be understood in order to make the appropriate eigenvalue selection option (e.g., Largest Magnitude)
in order to recover eigenvalues of interest for the original problem. You must specify the number of
eigenvalues to compute, which eigenvalues are of interest, the number of basis vectors to use, and whether
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or not the problem is standard or generalized. These items are controlled by setting options via the option
setting routine.

Setting the number of eigenvalues NEV and the number of basis vectors NCV (in the setup routine) for
optimal performance is very much problem dependent. If possible, it is best to avoid setting NEV in a way
that will split clusters of eigenvalues. As a rule of thumb NCV � 2�NEV is reasonable. There are
tradeoffs due to the cost of the user-supplied matrix-vector products and the cost of the implicit restart
mechanism. If the user-supplied matrix-vector product is relatively cheap, then a smaller value of NCV
may lead to more user matrix-vector products and implicit Arnoldi iterations but an overall decrease in
computation time. Convergence behaviour can be quite different depending on which of the spectrum
options (e.g., Largest Magnitude) is chosen. The Arnoldi process tends to converge most rapidly to
extreme points of the spectrum. Implicit restarting can be effective in focusing on and isolating a selected
set of eigenvalues near these extremes. In principle, implicit restarting could isolate eigenvalues in the
interior, but in practice this is difficult and usually unsuccessful. If you are interested in eigenvalues near a
point that is in the interior of the spectrum, a shift-invert strategy is usually required for reasonable
convergence.

The integer argument IREVCM is the reverse communication flag that will specify a requested action on
return from one of the solver routines F12ABF, F12APF and F12FBF. The options Standard and
Generalized specify if this is a standard or generalized eigenvalue problem. The dimension of the
problem is specified on the call to the initialization routine only; this value, together with the number of
eigenvalues and the dimension of the basis vectors is passed through the communication array. There are a
number of spectrum options which specify the eigenvalues to be computed; these options differ depending
on whether a Hermitian or non-Hermitian eigenvalue problem is to be solved. For example, the option
Both Ends is specific to Hermitian (symmetric) problems while the option Largest Imaginary is specific
to non-Hermitian eigenvalue problems. The specification of problem type will be described separately but
the reverse communication interface and loop structure is the same for each type of the basic modes
Regular, Regular Inverse, Shifted Inverse (also Shifted Real and Shifted Imaginary for real non-
symmetric problems), and for the problem type: Standard or Generalized. There are some additional
specialised modes for symmetric problems, Buckling and Cayley and for real nonsymmetric problems
with complex shifts applied in real arithmetic. You are encouraged to examine the documented example
programs for these modes.

The option Tolerance specifies the accuracy requested. If you wish to supply shifts for implicit restarting
then the option Supplied Shifts must be selected, otherwise the default Exact Shifts strategy will be used.
The option Supplied Shifts should only be used when you have a great deal of knowledge about the
spectrum and about the implicit restarted Arnoldi method and its underlying theory. The option Iteration
Limit should be set to the maximum number of implicit restarts allowed. The cost of an implicit restart
step (major iteration) is in the order of 4n NCV�NEVð Þ floating point operations for the dense matrix
operations and NCV�NEV matrix-vector products w Av with the matrix A.

The choice of computational mode through the option setting routine is very important. The legitimate
computational mode options available differ with each problem type and are listed below for each of them.

4.3.3 Computational modes for real symmetric problems

The reverse communication interface subroutine for symmetric eigenvalue problems is F12FBF. The
option for selecting the region of the spectrum of interest can be one of those listed in Table 1.

Largest Magnitude The eigenvalues of greatest magnitude

Largest Algebraic The eigenvalues of largest algebraic value (rightmost)

Smallest Magitude The eigenvalues of least magnitude.

Smallest Algebraic The eigenvalues of smallest algebraic value (leftmost)

Both Ends The eigenvalues from both ends of the algebraic spectrum

Table 1
Eigenvalue spectrum options for symmetric eigenproblems
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Table 2 lists the spectral transformation options for symmetric eigenvalue problems together with the
specification of OP and B for each mode and the problem type option setting.

Problem Type Mode Problem OP B

Standard Regular Ax ¼ �x A I

Standard Shifted Inverse Ax ¼ �x A� �Ið Þ�1 I

Generalized Regular Inverse Ax ¼ �Bx B�1Ax B

Generalized Shifted Inverse Ax ¼ �Bx A� �Bð Þ�1B B

Generalized Buckling Kx ¼ �KGx K � �KGð Þ�1K K

Generalized Cayley Ax ¼ �Bx A� �Bð Þ�1 Aþ �Bð Þ B

Table 2
Problem types, computational modes and spectral transformations for symmetric

eigenproblems

4.3.4 Computational modes for non-Hermitian problems

When A is a general non-Hermitian matrix and B is Hermitian and positive semi-definite, then the
selection of the eigenvalues is controlled by the choice of one of the options in Table 3.

Largest Magnitude The eigenvalues of greatest magnitude

Smallest Magitude The eigenvalues of least magnitude

Largest Real Part The eigenvalues with largest real part

Smallest Real Part The eigenvalues with smallest real part

Largest Imaginary Part The eigenvalues with largest imaginary part

Smallest Imaginary Part The eigenvalues with smallest imaginary part

Table 3
Eigenvalue spectrum options for real nonsymmetric and complex

eigenproblems

Table 4 lists the spectral transformation options for real nonsymmetric eigenvalue problems together with
the specification of OP and B for each mode and the problem type option setting. The equivalent listing
for complex non-Hermitian eigenvalue problems is given in Table 5.
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Problem Type Mode Problem OP B

Standard Regular Ax ¼ �x A I

Standard Shifted Inverse Ax ¼ �x A� �Ið Þ�1 I

Generalized Regular Inverse Ax ¼ �Bx B�1Ax B

Generalized Shifted Real Inverse with real � Ax ¼ �Bx A� �Bð Þ�1B B

Generalized Shifted Real Inverse with complex � Ax ¼ �Bx real A� �Bð Þ�1B
n o

B

Generalized Shifted Imaginary Inverse with complex � Ax ¼ �Bx imag A� �Bð Þ�1B
n o

B

Table 4
Problem types, computational modes and spectral transformations for real nonsymmetric eigenproblems

Note that there are two shifted inverse modes with complex shifts in Table 4. Since � is complex, these
both require the factorization of the matrix A� �B in complex arithmetic even though, in the case of real
nonsymmetric problems, both A and B are real. The only advantage of using this option for real
nonsymmetric problems instead of using the equivalent suite for complex problems is that all of the
internal operations in the Arnoldi process are executed in real arithmetic. This results in a factor of two
savings in storage and a factor of four savings in computational cost. There is additional post-processing
that is somewhat more complicated than the other modes in order to get the eigenvalues and eigenvectors
of the original problem. These modes are only recommended if storage is extremely critical.

Problem Type Mode Problem OP B

Standard Regular Ax ¼ �x A I

Standard Shifted Inverse Ax ¼ �x A� �Ið Þ�1 I

Generalized Regular Inverse Ax ¼ �Bx B�1Ax B

Generalized Shifted Inverse Ax ¼ �Bx A� �Bð Þ�1B B

Table 5
Problem types, computational modes and spectral transformations for

complex non-Hermitian eigenproblems

4.3.5 Post processing

On the final successful return from a reverse communication routine, the corresponding post-processing
routine must be called to get eigenvalues of the original problem and the corresponding eigenvectors if
desired. In the case of Shifted Inverse modes for Generalized problems, there are some subtleties to
recovering eigenvectors when B is ill-conditioned. This process is called eigenvector purification. It
prevents eigenvectors from being corrupted with noise due to the presence of eigenvectors corresponding
to near infinite eigenvalues. These operations are completely transparent to the user. There is negligible
additional cost to obtain eigenvectors. An orthonormal (Arnoldi/Lanczos) basis is always computed. The
approximate eigenvalues of the original problem are returned in ascending algebraic order. The option
relevant to this routine is Vectors which may be set to values that determine whether only eigenvalues are
desired or whether corresponding eigenvectors and/or Schur vectors are required. The value of the shift �
used in spectral transformations must be passed to the post-processing routine through the appropriately
named argument(s). The eigenvectors returned are normalized to have unit length with respect to the semi-
inner product that was used. Thus, if B ¼ I then they will have unit length in the standard-norm. In

general, a computed eigenvector x will satisfy xHBx ¼ 1.
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5 Index

Standard or generalized Eigenvalue problems for complex matrices:
general matrices:

initialize problem and method ................................................................................................ F12ANF
option setting ............................................................................................................................ F12ARF
reverse communication implicitly restarted Arnoldi method ................................................. F12APF
reverse communication monitoring ......................................................................................... F12ASF
selected eigenvalues, eigenvectors and/or Schur vectors of original problem ..................... F12AQF

Standard or generalized Eigenvalue problems for real nonsymmetric matrices:
banded matrices

initialize problem and method ................................................................................................ F12AFF
selected eigenvalues, eigenvectors and/or Schur vectors ....................................................... F12AGF

general matrices
initialize problem and method ................................................................................................ F12AAF
option setting ............................................................................................................................ F12ADF
reverse communication implicitly restarted Arnoldi method ................................................. F12ABF
reverse communication monitoring ......................................................................................... F12AEF
selected eigenvalues, eigenvectors and/or Schur vectors of original problem ..................... F12ACF

Standard or generalized Eigenvalue problems for real symmetric matrices:
banded matrices

initialize problem and method ................................................................................................ F12FFF
option setting ............................................................................................................................ F12FDF
selected eigenvalues, eigenvectors and/or Schur vectors ....................................................... F12FGF

general matrices
initialize problem and method ................................................................................................ F12FAF
reverse communication implicitly restarted Arnoldi(Lanczos) method ................................. F12FBF
reverse communication monitoring ......................................................................................... F12FEF
selected eigenvalues and eigenvectors and/or Schur vectors of original problem ............... F12FCF

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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