
NAG Fortran Library Routine Document

F11GDF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F11GDF is a setup routine, the first in a suite of three routines for the iterative solution of a symmetric
system of simultaneous linear equations. F11GDF must be called before F11GEF, the iterative solver. The
third routine in the suite, F11GFF, can be used to return additional information about the computation.

These three routines are suitable for the solution of large sparse symmetric systems of equations.

2 Specification

SUBROUTINE F11GDF(METHOD, PRECON, SIGCMP, NORM, WEIGHT, ITERM, N, TOL,
1 MAXITN, ANORM, SIGMAX, SIGTOL, MAXITS, MONIT, LWREQ,
2 WORK, LWORK, IFAIL)

INTEGER ITERM, N, MAXITN, MAXITS, MONIT, LWREQ, LWORK, IFAIL
real TOL, ANORM, SIGMAX, SIGTOL, WORK(LWORK)
CHARACTER*(*) METHOD
CHARACTER*1 PRECON, SIGCMP, NORM, WEIGHT

3 Description

The suite consisting of the routines F11GDF, F11GEF, F11GFF is designed to solve the symmetric system
of simultaneous linear equations Ax ¼ b of order n, where n is large and the matrix of the coefficients A
is sparse.

F11GDF is a setup routine which must be called before F11GEF, the iterative solver. The third routine in
the suite, F11GFF can be used to return additional information about the computation. Either of two
methods can be used:

1. Conjugate Gradient Method

For this method (Hestenes and Stiefel (1952), Golub and van Loan (1996), Barrett et al. (1994), Dias
da Cunha and Hopkins (1994)), the matrix A should ideally be positive-definite. The application of
the Conjugate Gradient method to indefinite matrices may lead to failure or to lack of convergence.

2. Lanczos Method (SYMMLQ)

This method, based upon the algorithm SYMMLQ (Paige and Saunders (1975), Barrett et al. (1994)),
is suitable for both positive-definite and indefinite matrices. It is more robust than the Conjugate
Gradient method but less efficient when A is positive-definite.

Both conjugate gradient and Lanczos (SYMMLQ) methods start from the residual r0 ¼ b�Ax0, where x0

is an initial estimate for the solution (often x0 ¼ 0), and generate an orthogonal basis for the Krylov

subspace spanfAkr0g, for k ¼ 0; 1; . . . ; by means of three-term recurrence relations (Golub and van Loan
(1996)). A sequence of symmetric tridiagonal matrices fTkg is also generated. Here and in the following,
the index k denotes the iteration count. The resulting symmetric tridiagonal systems of equations are
usually more easily solved than the original problem. A sequence of solution iterates fxkg is thus
generated such that the sequence of the norms of the residuals fkrkkg converges to a required tolerance.
Note that, in general, the convergence is not monotonic.

In exact arithmetic, after n iterations, this process is equivalent to an orthogonal reduction of A to

symmetric tridiagonal form, Tn ¼ QTAQ; the solution xn would thus achieve exact convergence. In
finite-precision arithmetic, cancellation and round-off errors accumulate causing loss of orthogonality.
These methods must therefore be viewed as genuinely iterative methods, able to converge to a solution
within a prescribed tolerance.
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The orthogonal basis is not formed explicitly in either method. The basic difference between the two
methods lies in the method of solution of the resulting symmetric tridiagonal systems of equations: the

conjugate gradient method is equivalent to carrying out an LDLT (Cholesky) factorization whereas the
Lanczos method (SYMMLQ) uses an LQ factorization.

Faster convergence can be achieved using a preconditioner (Golub and van Loan (1996), Barrett et al.
(1994)). A preconditioner maps the original system of equations onto a different system, say

�AA�xx ¼ �bb; ð1Þ
with, hopefully, better characteristics with respect to its speed of convergence: for example, the condition
number of the matrix of the coefficients can be improved or eigenvalues in its spectrum can be made to

coalesce. An orthogonal basis for the Krylov subspace spanf �AAk�rr0g, for k ¼ 0; 1; . . ., is generated and the
solution proceeds as outlined above. The algorithms used are such that the solution and residual iterates of
the original system are produced, not their preconditioned counterparts. Note that an unsuitable
preconditioner or no preconditioning at all may result in a very slow rate, or lack, of convergence.
However, preconditioning involves a trade-off between the reduction in the number of iterations required
for convergence and the additional computational costs per iteration. Also, setting up a preconditioner may
involve non-negligible overheads.

A preconditioner must be symmetric and positive-definite, i.e., representable by M ¼ EET, where M is

non-singular, and such that �AA ¼ E�1AE�T � In in (1), where In is the identity matrix of order n. Also,

we can define �rr ¼ E�1r and �xx ¼ ETx. These are formal definitions, used only in the design of the
algorithms; in practice, only the means to compute the matrix-vector products v ¼ Au and to solve the
preconditioning equations Mv ¼ u are required, that is, explicit information about M, E or their inverses
in not required at any stage.

The first termination criterion

krkkp � � ðkbkp þ kAkp kxkkpÞ ð2Þ

is available for both conjugate gradient and Lanczos (SYMMLQ) methods. In ((2)), p ¼ 1;1 or 2 and �
denotes a user-specified tolerance subject to maxð10; ffiffiffi

n
p Þ� � � < 1, where � is the machine precision.

Facilities are provided for the estimation of the norm of the matrix of the coefficients kAk1 ¼ kAk1, when

this is not known in advance, used in (2), by applying Higham’s method (Higham (1988)). Note that kAk2
cannot be estimated internally. This criterion uses an error bound derived from backward error analysis to
ensure that the computed solution is the exact solution of a problem as close to the original as the
termination tolerance requires. Termination criteria employing bounds derived from forward error analysis
could be used, but any such criteria would require information about the condition number �ðAÞ which is
not easily obtainable.

The second termination criterion

k�rrkk2 � � maxð1:0; kbk2=kr0k2Þ ðk�rr0k2 þ �1ð �AAÞ k��xxkk2Þ ð3Þ

is available only for the Lanczos method (SYMMLQ). In (3), �1ð �AAÞ ¼ k �AAk2 is the largest singular value

of the (preconditioned) iteration matrix �AA. This termination criterion monitors the progress of the solution

of the preconditioned system of equations and is less expensive to apply than criterion (2). When �1ð �AAÞ is
not supplied, facilities are provided for its estimation by �1ð �AAÞ � max

k
�1ðTkÞ. The interlacing property

�1ðTk�1Þ � �1ðTkÞ and Gerschgorin’s theorem provide lower and upper bounds from which �1ðTkÞ can be

easily computed by bisection. Alternatively, the less expensive estimate �1ð �AAÞ � max
k

kTkk1 can be used,

where �1ð �AAÞ � kTkk1 by Gerschgorin’s theorem. Note that only order of magnitude estimates are required

by the termination criterion.

Termination criterion (2) is the recommended choice, despite its (small) additional costs per iteration when
using the Lanczos method (SYMMLQ). Also, if the norm of the initial estimate is much larger than the
norm of the solution, that is, if kx0k � kxk, a dramatic loss of significant digits could result in complete
lack of convergence. The use of criterion (2) will enable the detection of such a situation, and the iteration
will be restarted at a suitable point. No such restart facilities are provided for criterion (3).
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Optionally, a vector w of user-specified weights can be used in the computation of the vector norms in

termination criterion (2), i.e., kvkðwÞp ¼ kvðwÞkp, where ðvðwÞÞi ¼ wi vi, for i ¼ 1; 2; . . . ; n. Note that the

use of weights increases the computational costs.

The sequence of calls to the routines comprising the suite is enforced: first, the setup routine F11GDF must
be called, followed by the solver F11GEF. F11GFF can be called either when F11GEF is carrying out a
monitoring step or after F11GEF has completed its tasks. Incorrect sequencing will raise an error
condition.

4 References

Hestenes M and Stiefel E (1952) Methods of conjugate gradients for solving linear systems J. Res. Nat.
Bur. Stand. 49 409–436

Golub G H and van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and
Van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods SIAM, Philadelphia

Dias da Cunha R and Hopkins T (1994) PIM 1.1 — the parallel iterative method package for systems of
linear equations user’s guide — Fortran 77 version Technical Report Computing Laboratory, University of
Kent at Canterbury, Kent, UK

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617–629

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Parameters

1: METHOD – CHARACTER*(*) Input

On entry: the iterative method to be used. The possible choices are:

’CG’ conjugate gradient method;

’SYMMLQ’ Lanczos method (SYMMLQ).

Constraint: METHOD ¼ ’CG’ or ’SYMMLQ’.

2: PRECON – CHARACTER*1 Input

On entry: determines whether preconditioning is used. The possible choices are:

’N’ no preconditioning;

’P’ preconditioning.

Constraint: PRECON ¼ ’N’ or ’P’.

3: SIGCMP – CHARACTER*1 Input

On entry: determines whether an estimate of �1ð �AAÞ ¼ kE�1AE�Tk2, the largest singular value of

the preconditioned matrix of the coefficients, is to be computed using the bisection method on the

sequence of tridiagonal matrices fTkg generated during the iteration. Note that �AA ¼ A when a
preconditioner is not used.

If SIGMAX > 0:0 (see below), i.e., when �1ð �AAÞ is supplied, the value of SIGCMP is ignored. The
possible choices are:

’S’ �1ð �AAÞ is to be computed using the bisection method.

’N’ The bisection method is not used.
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If the termination criterion (3) is used, requiring �1ð �AAÞ, an inexpensive estimate is computed
and used (see Section 3).

Suggested value: SIGCMP ¼ ’N’.

Constraint: SIGCMP ¼ ’S’ or ’N’.

4: NORM – CHARACTER*1 Input

On entry: defines the matrix and vector norm to be used in the termination criteria. The possible
choices are:

’1’ use the l1 norm;

’I’ use the l1 norm;

’2’ use the l2 norm.

Suggested values:

NORM ¼ ’I’, if ITERM ¼ 1,
NORM ¼ ’2’, if ITERM ¼ 2 (see below).

Constraints:

if ITERM ¼ 1, then NORM ¼ ’1’; ’I’ or ’2’,
if ITERM ¼ 2, then NORM ¼ ’2’.

5: WEIGHT – CHARACTER*1 Input

On entry: specifies whether a vector w of user-supplied weights is to be used in the vector norms

used in the computation of termination criterion (2) (ITERM ¼ 1): kvkðwÞp ¼ kvðwÞkp, where

v
ðwÞ
i ¼ wi vi, for i ¼ 1; 2; . . . ; n. The suffix p ¼ 1; 2;1 denotes the vector norm used, as specified

by the parameter NORM. Note that weights cannot be used when ITERM ¼ 2, i.e., when criterion
(3) is used. The possible choices are:

’W’ user-supplied weights are to be used and must be supplied on initial entry to F11GEF.

’N’ all weights are implicitly set equal to one. Weights do not need to be supplied on initial entry
to F11GEF.

Suggested value: WEIGHT ¼ ’N’.

Constraints:

if ITERM ¼ 1, then WEIGHT ¼ ’W’ or ’N’,
if ITERM ¼ 2, then WEIGHT ¼ ’N’.

6: ITERM – INTEGER Input

On entry: defines the termination criterion to be used. The possible choices are:

1 use the termination criterion defined in (2) (both conjugate gradient and Lanczos (SYMMLQ)
methods);

2 use the termination criterion defined in (3) (Lanczos method (SYMMLQ) only).

Suggested value: ITERM ¼ 1.

Constraints:

if METHOD ¼ ’CG’, then ITERM ¼ 1,
if METHOD ¼ ’SYMMLQ’, then ITERM ¼ 1 or 2.

7: N – INTEGER Input

On entry: the order n of the matrix A.

Constraint: N > 0.
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8: TOL – real Input

On entry: the tolerance � for the termination criterion. If TOL � 0:0, � ¼ maxð
ffiffi
�

p
;
ffiffiffi
n

p
�Þ is used,

where � is the machine precision. Otherwise � ¼ maxðTOL; 10�; ffiffiffi
n

p
�Þ is used.

Constraint: TOL < 1:0.

9: MAXITN – INTEGER Input

On entry: the maximum number of iterations.

Constraint: MAXITN > 0.

10: ANORM – real Input

On entry: if ANORM > 0:0, the value of kAkp to be used in the termination criterion (2)

(ITERM ¼ 1). If ANORM � 0:0, ITERM ¼ 1 and NORM ¼ ’1’ or ’I’, then kAk1 ¼ kAk1 is

estimated internally by F11GEF. If ITERM ¼ 2, then ANORM is not referenced.

Constraint: if ITERM ¼ 1 and NORM ¼ ’2’, then ANORM > 0:0.

11: SIGMAX – real Input

On entry: if SIGMAX > 0:0, the value of �1ð �AAÞ ¼ kE�1AE�Tk2. If SIGMAX � 0:0, �1ð �AAÞ is

estimated by F11GEF when either SIGCMP ¼ ’S’ or termination criterion (3) (ITERM ¼ 2) is
employed, though it will be used only in the latter case. Otherwise, SIGMAX is not referenced.

12: SIGTOL – real Input

On entry: the tolerance used in assessing the convergence of the estimate of �1ð �AAÞ ¼ k �AAk2 when

the bisection method is used. If SIGTOL � 0:0, the default value SIGTOL ¼ 0:01 is used. The
actual value used is max (SIGTOL,�). If SIGCMP ¼ ’N’ or SIGMAX > 0:0, then SIGTOL is not
referenced.

Suggested value: SIGTOL ¼ 0:01 should be sufficient in most cases.

Constraint: if SIGCMP ¼ ’S’ and SIGMAX � 0:0, then SIGTOL < 1:0.

13: MAXITS – INTEGER Input

On entry: the maximum iteration number k ¼ MAXITS for which �1ðTkÞ is computed by bisection
(see also Section 3). If SIGCMP ¼ ’N’ or SIGMAX > 0:0, then MAXITS is not referenced.

Suggested value: MAXITS ¼ minð10; nÞ when SIGTOL is of the order of its default value (0.01).

Constraint: if SIGCMP ¼ ’S’ and SIGMAX � 0:0, then 1 � MAXITS � MAXITN.

14: MONIT – INTEGER Input

On entry: if MONIT > 0, the frequency at which a monitoring step is executed by F11GEF: the
current solution and residual iterates will be returned by F11GEF and a call to F11GFF made
possible every MONIT iterations, starting from the MONIT-th. Otherwise, no monitoring takes
place.

There are some additional computational costs involved in monitoring the solution and residual
vectors when the Lanczos method (SYMMLQ) is used.

Constraint: MONIT � MAXITN.

15: LWREQ – INTEGER Output

On exit: the minimum amount of workspace required by F11GEF. (See also Section 5 of the
document for F11GEF.)
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16: WORK(LWORK) – real array Workspace

On exit: the workspace WORK is initialised by F11GDF. It must not be modified before calling the
next routine in the suite, namely F11GEF.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F11GDF
is called.

Constraint: LWORK � 120.

Note: although the minimum value of LWORK ensures the correct functioning of F11GDF, a larger
value is required by the other routines in the suite, namely F11GEF and F11GFF. The required
value is as follows:

Method Requirements

CG LWORK ¼ 120þ 5nþ p;

SYMMLQ LWORK ¼ 120þ 6nþ p;

where

p ¼ 2 �MAXITSþ 1, when an estimate of �1ðAÞ (SIGMAX) is computed;

p ¼ 0, otherwise.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i

On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11GDF has been called out of sequence.

7 Accuracy

Not applicable.

8 Further Comments

When �1ð �AAÞ is not supplied (SIGMAX � 0:0) but it is required, it is estimated by F11GEF using either of
the two methods described in Section 3, as specified by the parameter SIGCMP. In particular, if

SIGCMP ¼ ’S’, then the computation of �1ð �AAÞ is deemed to have converged when the differences between
three successive values of �1ðTkÞ differ, in a relative sense, by less than the tolerance SIGTOL, i.e., when
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max
j�ðkÞ

1 � �
ðk�1Þ
1 j

�
ðkÞ
1

;
j�ðkÞ

1 � �
ðk�2Þ
1 j

�
ðkÞ
1

 !
� SIGTOL:

The computation of �1ð �AAÞ is also terminated when the iteration count exceeds the maximum value
allowed, i.e., k � MAXITS.

Bisection is increasingly expensive with increasing iteration count. A reasonably large value of SIGTOL,
of the order of the suggested value, is recommended and an excessive value of MAXITS should be

avoided. Under these conditions, �1ð �AAÞ usually converges within very few iterations.

9 Example

The example solves a 20� 20 symmetric system of simultaneous linear equations using the conjugate
gradient method, where the matrix of the coefficients A, has random sparsity pattern. An incomplete
Cholesky preconditioner is used (F11JAF and F11JBF).

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* F11GDF Example Program Text
* Mark 20 Release. NAG Copyright 2001.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, LA, LIWORK, LWORK
PARAMETER (NMAX=1000,LA=10000,LIWORK=2*LA+7*NMAX+1,

+ LWORK=6*NMAX)
* .. Local Scalars ..

real ANORM, DSCALE, DTOL, SIGERR, SIGMAX, SIGTOL,
+ STPLHS, STPRHS, TOL
INTEGER I, IFAIL, IFAIL1, IREVCM, ITERM, ITN, ITS, LFILL,

+ LWREQ, MAXITN, MAXITS, MONIT, N, NNZ, NNZC, NPIVM
LOGICAL LOOP
CHARACTER MIC, NORM, PRECON, PSTRAT, SIGCMP, WEIGHT
CHARACTER*6 METHOD

* .. Local Arrays ..
real A(LA), B(NMAX), WGT(NMAX), WORK(LWORK), X(NMAX)
INTEGER ICOL(LA), IPIV(NMAX), IROW(LA), ISTR(NMAX+1),

+ IWORK(LIWORK)
* .. External Subroutines ..

EXTERNAL F11GDF, F11GEF, F11GFF, F11JAF, F11JBF, F11XEF
* .. Executable Statements ..

WRITE (NOUT,*) ’F11GDF Example Program Results’
*
* Skip heading in data file
*

READ (NIN,*)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*
* Read or initialize the parameters for the iterative solver
*

READ (NIN,*) METHOD
READ (NIN,*) PRECON, SIGCMP, NORM, WEIGHT, ITERM
READ (NIN,*) TOL, MAXITN
READ (NIN,*) MONIT
ANORM = 0.0e0
SIGMAX = 0.0e0
SIGTOL = 1.0e-2
MAXITS = N

*
* Read the parameters for the preconditioner
*
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READ (NIN,*) LFILL, DTOL
READ (NIN,*) MIC, DSCALE
READ (NIN,*) PSTRAT

*
* Read the number of non-zero elements of the matrix A, then read
* the non-zero elements
*

READ (NIN,*) NNZ
DO 20 I = 1, NNZ

READ (NIN,*) A(I), IROW(I), ICOL(I)
20 CONTINUE

*
* Read right-hand side vector b and initial approximate solution x
*

READ (NIN,*) (B(I),I=1,N)
READ (NIN,*) (X(I),I=1,N)

*
* Calculate incomplete Cholesky factorization
*

IFAIL = 0
CALL F11JAF(N,NNZ,A,LA,IROW,ICOL,LFILL,DTOL,MIC,DSCALE,PSTRAT,

+ IPIV,ISTR,NNZC,NPIVM,IWORK,LIWORK,IFAIL)
*
* Call F11GDF to initialize the solver
*

IFAIL = 0
CALL F11GDF(METHOD,PRECON,SIGCMP,NORM,WEIGHT,ITERM,N,TOL,

+ MAXITN,ANORM,SIGMAX,SIGTOL,MAXITS,MONIT,LWREQ,WORK,
+ LWORK,IFAIL)

*
* Call repeatedly F11GEF to solve the equations
* Note that the arrays B and X are overwritten
*
* On final exit, X will contain the solution and B the residual
* vector
*

IFAIL = 0
IREVCM = 0
LOOP = .TRUE.

*
LWREQ = LWORK

40 CONTINUE
CALL F11GEF(IREVCM,X,B,WGT,WORK,LWREQ,IFAIL)
IF (IREVCM.EQ.1) THEN

IFAIL1 = -1
CALL F11XEF(N,NNZ,A,IROW,ICOL,’No checking’,X,B,IFAIL1)
IF (IFAIL1.NE.0) IREVCM = 6

ELSE IF (IREVCM.EQ.2) THEN
IFAIL1 = -1
CALL F11JBF(N,A,LA,IROW,ICOL,IPIV,ISTR,’No checking’,X,B,

+ IFAIL1)
IF (IFAIL1.NE.0) IREVCM = 6

ELSE IF (IREVCM.EQ.3) THEN
IFAIL1 = 0
CALL F11GFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR,WORK,

+ LWREQ,IFAIL1)
WRITE (NOUT,99999) ITN, STPLHS
WRITE (NOUT,99998)
WRITE (NOUT,99997) (X(I),B(I),I=1,N)

ELSE IF (IREVCM.EQ.4) THEN
LOOP = .FALSE.

END IF
IF (LOOP) GO TO 40

*
* Obtain information about the computation
*

IFAIL1 = 0
CALL F11GFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR,WORK,

+ LWREQ,IFAIL1)
*
* Print the output data
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*
WRITE (NOUT,99996)
WRITE (NOUT,99995) ’Number of iterations for convergence: ’,

+ ITN
WRITE (NOUT,99994) ’Residual norm: ’,

+ STPLHS
WRITE (NOUT,99994) ’Right-hand side of termination criterion:’,

+ STPRHS
WRITE (NOUT,99994) ’1-norm of matrix A: ’,

+ ANORM
WRITE (NOUT,99994) ’Largest singular value of A_bar: ’,

+ SIGMAX
*
* Output x
*

WRITE (NOUT,99998)
WRITE (NOUT,99997) (X(I),B(I),I=1,N)

END IF
STOP

*
99999 FORMAT (/1X,’Monitoring at iteration no.’,I4,/1X,1P,’residual no’,

+ ’rm: ’,e14.4)
99998 FORMAT (2X,’Solution vector’,2X,’Residual vector’)
99997 FORMAT (1X,1P,e16.4,1X,e16.4)
99996 FORMAT (/1X,’Final Results’)
99995 FORMAT (1X,A,I4)
99994 FORMAT (1X,A,1P,e14.4)

END

9.2 Program Data

F11GDF Example Program Data
7 N
’CG’ METHOD
’P’ ’S’ ’1’ ’N’ 1 PRECON, SIGCMP, NORM, WEIGHT, ITERM
1.0e-6 20 TOL, MAXITN
2 MONIT
0 0.0 LFILL, DTOL
’N’ 0.0 MIC, DSCALE
’M’ PSTRAT

16 NNZ
4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4

-1. 5 1
1. 5 4
4. 5 5
1. 6 2

-2. 6 5
3. 6 6
2. 7 1

-1. 7 2
-2. 7 3
5. 7 7 A(I), IROW(I), ICOL(I), I=1,...,NNZ

15. 18. -8. 21.
11. 10. 29. B(I), I=1,...,N
0. 0. 0. 0.
0. 0. 0. X(I), I=1,...,N
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9.3 Program Results

F11GDF Example Program Results

Monitoring at iteration no. 2
residual norm: 1.9938E+00
Solution vector Residual vector

9.6320E-01 -2.2960E-01
1.9934E+00 2.2254E-01
3.0583E+00 9.5827E-02
4.1453E+00 -2.5155E-01
4.8289E+00 -1.7160E-01
5.6630E+00 6.7533E-01
7.1062E+00 -3.4737E-01

Monitoring at iteration no. 4
residual norm: 6.6574E-03
Solution vector Residual vector

9.9940E-01 -1.0551E-03
2.0011E+00 -2.4675E-03
3.0008E+00 -1.7116E-05
3.9996E+00 4.4929E-05
4.9991E+00 2.1359E-03
5.9993E+00 -8.7482E-04
7.0007E+00 6.2045E-05

Final Results
Number of iterations for convergence: 5
Residual norm: 9.7700E-15
Right-hand side of termination criterion: 3.9200E-04
1-norm of matrix A: 1.0000E+01
Largest singular value of A_bar: 1.3596E+00
Solution vector Residual vector

1.0000E+00 0.0000E+00
2.0000E+00 3.5527E-15
3.0000E+00 -8.8818E-16
4.0000E+00 0.0000E+00
5.0000E+00 0.0000E+00
6.0000E+00 -1.7764E-15
7.0000E+00 3.5527E-15
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