
NAG Fortran Library Routine Document

F08WNF (ZGGEV)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F08WNF (ZGGEV) computes for a pair of n by n complex nonsymmetric matrices A;Bð Þ, the generalized
eigenvalues, and optionally, the left and/or right generalized eigenvectors using the QZ algorithm.

2 Specification

SUBROUTINE F08WNF (JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
1 LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)

INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO

double precision RWORK(*)

complex*16 A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
1 VR(LDVR,*), WORK(*)
CHARACTER*1 JOBVL, JOBVR

The routine may be called by its LAPACK name zggev.

3 Description

A generalized eigenvalue for a pair of matrices A;Bð Þ is a scalar � or a ratio �=� ¼ �, such that A� �B
is singular. It is usually represented as the pair �; �ð Þ, as there is a reasonable interpretation for � ¼ 0, and
even for both being zero.

The right generalized eigenvector vj corresponding to the generalized eigenvalue �j of A;Bð Þ satisfies

Avj ¼ �jBvj.

The left generalized eigenvector uj corresponding to the generalized eigenvalues �j of A;Bð Þ satisfies

uj
HA ¼ �juj

HB,

where uj
H is the conjugate-transpose of uj.

All the eigenvalues and, if required, all the eigenvectors of the complex generalized eigenproblem
Ax ¼ �Bx where A and B are complex, square matrices, are determined using the QZ algorithm. The
complex QZ algorithm consists of three stages:

1. A is reduced to upper Hessenberg form (with real, non-negative sub-diagonal elements) and at the
same time B is reduced to upper triangular form.

2. A is further reduced to triangular form while the triangular form of B is maintained and the diagonal
elements of B are made real and non-negative. This is the generalized Schur form of the pair A;Bð Þ.
This routine does not actually produce the eigenvalues �j, but instead returns �j and �j such that

�j ¼ �j=�j, j ¼ 1; 2; . . . ; n.

The division by �j becomes the responsibility of the user, since �j may be zero, indicating an infinite

eigenvalue.

3. If the eigenvectors are required they are obtained from the triangular matrices and then transferred
back into the original co-ordinate system.
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5 Parameters

1: JOBVL – CHARACTER*1 Input

On entry: if JOBVL ¼ N , do not compute the left generalized eigenvectors.

If JOBVL ¼ V, compute the left generalized eigenvectors.

2: JOBVR – CHARACTER*1 Input

On entry: if JOBVR ¼ N , do not compute the right generalized eigenvectors.

If JOBVR ¼ V, compute the right generalized eigenvectors.

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: AðLDA,�Þ – complex*16 array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A in the pair A;Bð Þ.
On exit: has been overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08WNF
(ZGGEV) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB,�Þ – complex*16 array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.

On entry: the matrix B in the pair A;Bð Þ.
On exit: has been overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WNF
(ZGGEV) is called.

Constraint: LDB � max 1;Nð Þ.

8: ALPHAð�Þ – complex*16 array Output

Note: the dimension of the array ALPHA must be at least max 1;Nð Þ.
On exit: see the description of BETA below.
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9: BETAð�Þ – complex*16 array Output

Note: the dimension of the array BETA must be at least max 1;Nð Þ.
On exit: ALPHAðjÞ=BETAðjÞ, j ¼ 1; . . . ;N, will be the generalized eigenvalues.

Note: the quotients ALPHAðjÞ=BETAðjÞ may easily over- or underflow, and BETAðjÞ may even

be zero. Thus, the user should avoid naively computing the ratio �j=�j. However, max �j

�� �� will be
always less than and usually comparable with Ak k2 in magnitude, and max �j

�� �� always less than and

usually comparable with Bk k2.

10: VLðLDVL,�Þ – complex*16 array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ.
On exit: if JOBVL ¼ V, the left generalized eigenvectors uj are stored one after another in the

columns of VL, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag. partj j ¼ 1.

If JOBVL ¼ N , VL is not referenced.

11: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which F08WNF
(ZGGEV) is called.

Constraints:

if JOBVL ¼ V, LDVL � max 1;Nð Þ;
LDVL � 1 otherwise.

12: VRðLDVR,�Þ – complex*16 array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ.
On exit: if JOBVR ¼ V, the right generalized eigenvectors vj are stored one after another in the

columns of VR, in the same order as the corresponding eigenvalues.

Each eigenvector will be scaled so the largest component will have real partj j þ imag. partj j ¼ 1.

If JOBVR ¼ N , VR is not referenced.

13: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which F08WNF
(ZGGEV) is called.

Constraints:

if JOBVR ¼ V, LDVR � max 1;Nð Þ;
LDVR � 1 otherwise.

14: WORKð�Þ – complex*16 array Workspace

Note: the dimension of the array WORK must be at least max 1;LWORKð Þ.
On exit: if INFO ¼ 0, WORK 1ð Þ returns the optimal LWORK.

15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08WNF
(ZGGEV) is called.

For good performance, LWORK must generally be larger than the minimum; increase workspace by,
say, nb�N, where nb is the block size.
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If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of the
WORK array, returns this value as the first entry of the WORK array, and no error message related
to LWORK is issued.

Constraint: LWORK � max 1; 8� Nð Þ.

16: RWORKð�Þ – double precision array Workspace

Note: the dimension of the array RWORK must be at least max 1; 8� Nð Þð Þ.

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO ¼ �i, the ith argument had an illegal value.

INFO ¼ 1N

The QZ iteration failed. No eigenvectors have been calculated, but ALPHAðjÞ and BETAðjÞ
should be correct for j ¼ INFOþ 1; . . . ;N.

INFO > N

¼ Nþ 1: other then QZ iteration failed in F08XEF (DHGEQZ),

¼ Nþ 2: error return from F08YKF (DTGEVC).

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrices Aþ Eð Þ and Bþ Fð Þ, where
E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF ,

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding of the
effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in relation to
the significance of small values of �j and �j. It should be noted that if �j and �j are both small for any j,
it may be that no reliance can be placed on any of the computed eigenvalues �i ¼ �i=�i. The user is
recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice on determining the
sensitivity of the eigenvalues to perturbations in the data.

8 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08WAF (DGGEV).

9 Example

To find all the eigenvalues and right eigenvectors of the matrix pair A;Bð Þ, where

A ¼

�21:10� 22:50i 53:50� 50:50i �34:50þ 127:50i 7:50þ 0:50i
�0:46� 7:78i �3:50� 37:50i �15:50þ 58:50i �10:50� 1:50i
4:30� 5:50i 39:70� 17:10i �68:50þ 12:50i �7:50� 3:50i
5:50þ 4:40i 14:40þ 43:30i �32:50� 46:00i �19:00� 32:50i

0
BB@

1
CCA

and
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B ¼

1:00� 5:00i 1:60þ 1:20i �3:00þ 0:00i 0:00� 1:00i
0:80� 0:60i 3:00� 5:00i �4:00þ 3:00i �2:40� 3:20i
1:00þ 0:00i 2:40þ 1:80i �4:00� 5:00i 0:00� 3:00i
0:00þ 1:00i �1:80þ 2:40i 0:00� 4:00i 4:00� 5:00i

0
BB@

1
CCA.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but
should be suitable for large problems.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the

Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,

the results produced may not be identical for all implementations.

* F08WNF Example Program Text
* Mark 21 Release. NAG Copyright 2004.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NB, NMAX
PARAMETER (NB=64,NMAX=10)
INTEGER LDA, LDB, LDVR, LWORK
PARAMETER (LDA=NMAX,LDB=NMAX,LDVR=NMAX,LWORK=NMAX+NMAX*NB)

* .. Local Scalars ..
DOUBLE PRECISION SMALL
INTEGER I, INFO, J, LWKOPT, N

* .. Local Arrays ..
COMPLEX *16 A(LDA,NMAX), ALPHA(NMAX), B(LDB,NMAX),

+ BETA(NMAX), DUMMY(1,1), VR(LDVR,NMAX),
+ WORK(LWORK)
DOUBLE PRECISION RWORK(8*NMAX)

* .. External Functions ..
DOUBLE PRECISION X02AMF
EXTERNAL X02AMF

* .. External Subroutines ..
EXTERNAL ZGGEV

* .. Intrinsic Functions ..
INTRINSIC ABS

* .. Executable Statements ..
WRITE (NOUT,*) ’F08WNF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*
* Read in the matrices A and B
*

READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
READ (NIN,*) ((B(I,J),J=1,N),I=1,N)

*
* Solve the generalized eigenvalue problem
*

CALL ZGGEV(’No left vectors’,’Vectors (right)’,N,A,LDA,B,LDB,
+ ALPHA,BETA,DUMMY,1,VR,LDVR,WORK,LWORK,RWORK,INFO)

*
IF (INFO.GT.0) THEN

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Failure in ZGGEV. INFO =’, INFO

ELSE
SMALL = X02AMF()
DO 20 J = 1, N

WRITE (NOUT,*)
IF ((ABS(ALPHA(J)))*SMALL.GE.ABS(BETA(J))) THEN

WRITE (NOUT,99998) ’Eigenvalue(’, J, ’)’,
+ ’ is numerically infinite or undetermined’,
+ ’ALPHA(’, J, ’) = ’, ALPHA(J), ’, BETA(’, J, ’) = ’,
+ BETA(J)

ELSE
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WRITE (NOUT,99997) ’Eigenvalue(’, J, ’) = ’,
+ ALPHA(J)/BETA(J)

END IF
WRITE (NOUT,*)
WRITE (NOUT,99996) ’Eigenvector(’, J, ’)’,

+ (VR(I,J),I=1,N)
20 CONTINUE

*
LWKOPT = WORK(1)
IF (LWORK.LT.LWKOPT) THEN

WRITE (NOUT,*)
WRITE (NOUT,99995) ’Optimum workspace required = ’,

+ LWKOPT, ’Workspace provided = ’, LWORK
END IF

END IF
ELSE

WRITE (NOUT,*)
WRITE (NOUT,*) ’NMAX too small’

END IF
STOP

*
99999 FORMAT (1X,A,I4)
99998 FORMAT (1X,A,I2,2A,/1X,2(A,I2,A,’(’,1P,E11.4,’,’,1P,E11.4,’)’))
99997 FORMAT (1X,A,I2,A,’(’,1P,E11.4,’,’,1P,E11.4,’)’)
99996 FORMAT (1X,A,I2,A,/3(1X,’(’,1P,E11.4,’,’,1P,E11.4,’)’,:))
99995 FORMAT (1X,A,I5,/1X,A,I5)

END

9.2 Program Data

F08WNF Example Program Data
4 : Value of N
(-21.10,-22.50) ( 53.50,-50.50) (-34.50,127.50) ( 7.50, 0.50)
( -0.46, -7.78) ( -3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
( 4.30, -5.50) ( 39.70,-17.10) (-68.50, 12.50) ( -7.50, -3.50)
( 5.50, 4.40) ( 14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : End of A
( 1.00, -5.00) ( 1.60, 1.20) ( -3.00, 0.00) ( 0.00, -1.00)
( 0.80, -0.60) ( 3.00, -5.00) ( -4.00, 3.00) ( -2.40, -3.20)
( 1.00, 0.00) ( 2.40, 1.80) ( -4.00, -5.00) ( 0.00, -3.00)
( 0.00, 1.00) ( -1.80, 2.40) ( 0.00, -4.00) ( 4.00, -5.00) : End of B

9.3 Program Results

F08WNF Example Program Results

Eigenvalue( 1) = ( 3.0000E+00,-9.0000E+00)

Eigenvector( 1)
(-8.2377E-01,-1.7623E-01) (-1.5295E-01, 7.0655E-02) (-7.0655E-02,-1.5295E-01)
( 1.5295E-01,-7.0655E-02)

Eigenvalue( 2) = ( 2.0000E+00,-5.0000E+00)

Eigenvector( 2)
( 6.3974E-01, 3.6026E-01) ( 4.1597E-03,-5.4650E-04) ( 4.0212E-02, 2.2645E-02)
(-2.2645E-02, 4.0212E-02)

Eigenvalue( 3) = ( 3.0000E+00,-1.0000E+00)

Eigenvector( 3)
( 9.7754E-01, 2.2465E-02) ( 1.5910E-01,-1.1371E-01) ( 1.2090E-01,-1.5371E-01)
( 1.5371E-01, 1.2090E-01)

Eigenvalue( 4) = ( 4.0000E+00,-5.0000E+00)

Eigenvector( 4)
(-9.0623E-01, 9.3766E-02) (-7.4303E-03, 6.8750E-03) ( 3.0208E-02,-3.1255E-03)
(-1.4586E-02,-1.4097E-01)
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