NAG Fortran Library Routine Document

F08NTF (CUNGHR/ZUNGHR)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08NTF (CUNGHR/ZUNGHR) generates the complex unitary matrix Q which was determined by F08NSF (CGEHRD/ZGEHRD) when reducing a complex general matrix A to Hessenberg form.

2 Specification

```fortran
SUBROUTINE F08NTF(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY cunghr(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER N, ILO, IHI, LDA, LWORK, INFO
complex A(LDA,*), TAU(*), WORK(*)
```

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine is intended to be used following a call to F08NSF (CGEHRD/ZGEHRD), which reduces a complex general matrix A to upper Hessenberg form H by a unitary similarity transformation: $A = QHQ^H$. F08NSF (CGEHRD/ZGEHRD) represents the matrix Q as a product of $i_{hi} - i_{lo}$ elementary reflectors. Here i_{lo} and i_{hi} are values determined by F08NVF (CGEBAL/ZGEBAL) when balancing the matrix; if the matrix has not been balanced, $i_{lo} = 1$ and $i_{hi} = n$.

This routine may be used to generate Q explicitly as a square matrix. Q has the structure:

$$Q = \begin{pmatrix}
I & 0 & 0 \\
0 & Q_{22} & 0 \\
0 & 0 & I
\end{pmatrix}$$

where Q_{22} occupies rows and columns i_{lo} to i_{hi}.

4 References

5 Parameters

1: N – INTEGER

Input

On entry: n, the order of the matrix Q.

Constraint: $N \geq 0$.

2: ILO – INTEGER

Input

3: IHI – INTEGER

Input

On entry: these must be the same parameters ILO and IHI, respectively, as supplied to F08NSF (CGEHRD/ZGEHRD).

Constraints:

$$1 \leq ILO \leq IHI \leq N \text{ if } N > 0,$$

$ILO = 1$ and $IHI = 0$ if $N = 0$.

4: A(LDA,*) – complex array
 Input/Output
 Note: the second dimension of the array A must be at least max(1,N).
 On entry: details of the vectors which define the elementary reflectors, as returned by F08NSF
 (CGEHRD/ZGEHRD).
 On exit: the n by n unitary matrix Q.

5: LDA – INTEGER
 Input
 On entry: the first dimension of the array A as declared in the (sub)program from which F08NTF
 (CUNGHR/ZUNGHR) is called.
 Constraint: LDA ≥ max(1,N).

6: TAU(*) – complex array
 Input
 Note: the dimension of the array TAU must be at least max(1,N – 1).
 On entry: further details of the elementary reflectors, as returned by F08NSF
 (CGEHRD/ZGEHRD).

7: WORK(*) – complex array
 Workspace
 Note: the dimension of the array WORK must be at least max(1,LWORK).
 On exit: if INFO = 0, the real part of WORK(1) contains the minimum value of LWORK required
 for optimum performance.

8: LWORK – INTEGER
 Input
 On entry: the dimension of the array WORK as declared in the (sub)program from which F08NTF
 (CUNGHR/ZUNGHR) is called, unless LWORK = -1, in which case a workspace query is
 assumed and the routine only calculates the optimal dimension of WORK (using the formula given
 below).
 Suggested value: for optimum performance LWORK should be at least (IHI – ILO) × nb, where nb
 is the blocksize.
 Constraint: LWORK ≥ max(1, IHI – ILO) or LWORK = -1.

9: INFO – INTEGER
 Output
 On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0
 If INFO = -i, the i-th parameter had an illegal value. An explanatory message is output, and
 execution of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

$$ ||E||_2 = O(\epsilon),$$

where ϵ is the machine precision.
8 Further Comments

The total number of real floating-point operations is approximately \(16q^3\), where \(q = i_{hi} - i_{lo}\).

The real analogue of this routine is F08NFF (SORGHR/DORGHR).

9 Example

To compute the Schur factorization of the matrix \(A\), where

\[
A = \begin{pmatrix}
-3.97 - 5.04i & -4.11 + 3.70i & -0.34 + 1.01i & 1.29 - 0.86i \\
0.34 - 1.50i & 1.52 - 0.43i & 1.88 - 5.38i & 3.36 + 0.65i \\
3.31 - 3.85i & 2.50 + 3.45i & 0.88 - 1.08i & 0.64 - 1.48i \\
-1.10 + 0.82i & 1.81 - 1.59i & 3.25 + 1.33i & 1.57 - 3.44i
\end{pmatrix}
\]

Here \(A\) is general and must first be reduced to Hessenberg form by F08NSF (CGEHRD/ZGEHRD). The program then calls F08NTF (CUNGHR/ZUNGHR) to form \(Q\), and passes this matrix to F08PSF (CHSEQR/ZHSEQR) which computes the Schur factorization of \(A\).

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

* F08NTF Example Program Text
* .. Parameters..
 INTEGER NIN, NOUT
 PARAMETER (NIN=5, NOUT=6)
 INTEGER NMAX, LDA, LDZ, LWORK
 PARAMETER (NMAX=8, LDA=NMAX, LDZ=NMAX, LWORK=64*(NMAX-1))
* .. Local Scalars..
 INTEGER I, IFAIL, INFO, J, N
* .. Local Arrays..
 complex A(LDA,NMAX), TAU(NMAX), W(NMAX), WORK(LWORK), + Z(LDZ,NMAX)
 CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines..
 EXTERNAL F06TFF, X04DBF, \texttt{cgehrd}, \texttt{chseqr}, \texttt{cunghr}
* .. Executable Statements..
 WRITE (NOUT,*) 'F08NTF Example Program Results'
* Skip heading in data file
 READ (NIN,*)
 READ (NIN,*) N
 IF (N.LE.NMAX) THEN
 * Read A from data file
 READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
 * Reduce A to upper Hessenberg form \(H = (Q**H)*A*Q\)
 CALL \texttt{cgehrd}(N,1,N,A,LDA,TAU,WORK,LWORK,INFO)
 * Copy A into Z
 CALL F06TFF('General',N,N,A,LDA,Z,LDZ)
 * Form \(Q\) explicitly, storing the result in \(Z\)
 CALL \texttt{cunghr}(N,1,N,Z,LDZ,TAU,WORK,LWORK,INFO)
 * Calculate the Schur factorization of \(H = Y*T*(Y**H)\) and form \(Q*Y\) explicitly, storing the result in \(Z\)
 Note that \(A = Z*T*(Z**H)\), where \(Z = Q*Y\)
CALL chseqr('Schur form', 'Vectors', N, 1, N, A, LDA, W, Z, LDZ, WORK, LWORK, INFO)

* Print Schur form
* WRITE (NOUT,*)
 IFAIL = 0
* CALL X04DBF('General', '', N, N, A, LDA, 'Bracketed', 'F7.4',
 'Schur form', 'Integer', RLABS, 'Integer', CLABS, 80, 0,
 IFAIL)

* Print Schur vectors
* WRITE (NOUT,*)
 IFAIL = 0
* CALL X04DBF('General', '', N, N, Z, LDZ, 'Bracketed', 'F7.4',
 'Schur vectors of A', 'Integer', RLABS, 'Integer', CLABS, 80, 0, IFAIL)

END IF
STOP
*
END

9.2 Program Data
F08NTF Example Program Data

9.3 Program Results
F08NTF Example Program Results