
NAG Fortran Library Routine Document

F08MSF (CBDSQR=ZBDSQR)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Warning. The specification of the parameter WORK changed at Mark 20: the length of WORK needs to be increased.

1 Purpose

F08MSF (CBDSQR=ZBDSQR) computes the singular value decomposition of a complex general matrix
which has been reduced to bidiagonal form.

2 Specification

SUBROUTINE F08MSF(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
1 LDC, WORK, INFO)
ENTRY cbdsqr (UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,

1 LDC, WORK, INFO)

INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
real D(*), E(*), WORK(*)
complex VT(LDVT,*), U(LDU,*), C(LDC,*)
CHARACTER*1 UPLO

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine computes the singular values, and optionally, the left or right singular vectors of a real upper
or lower bidiagonal matrix B. In other words, it can compute the singular value decomposition (SVD) of
B as

B ¼ U�V T :

Here � is a diagonal matrix with real diagonal elements �i (the singular values of B), such that

�1 � �2 � . . . � �n � 0;

U is an orthogonal matrix whose columns are the left singular vectors ui; V is an orthogonal matrix whose
rows are the right singular vectors vi. Thus

Bui ¼ �ivi and BTvi ¼ �iui; i ¼ 1; 2; . . . ; n:

To compute U and/or V T , the arrays U and/or VT must be initialised to the unit matrix before F08MSF
(CBDSQR=ZBDSQR) is called.

The routine stores the real orthogonal matrices U and V T in complex arrays U and VT, so that it may also
be used to compute the SVD of a complex general matrix A which has been reduced to bidiagonal form by

a unitary transformation: A ¼ QBPH . If A is m by n with m � n, then Q is m by n and PH is n by n;

if A is n by p with n < p, then Q is n by n and PH is n by p. In this case, the matrices Q and/or PH

must be formed explicitly by F08KTF (CUNGBR=ZUNGBR) and passed to F08MSF
(CBDSQR=ZBDSQR) in the arrays U and/or VT respectively.

F08MSF (CBDSQR=ZBDSQR) also has the capability of forming UHC, where C is an arbitrary complex
matrix; this is needed when using the SVD to solve linear least-squares problems.

F08MSF (CBDSQR=ZBDSQR) uses two different algorithms. If any singular vectors are required (that is,
if NCVT > 0 or NRU > 0 or NCC > 0), the bidiagonal QR algorithm is used, switching between zero-
shift and implicitly shifted forms to preserve the accuracy of small singular values, and switching between
QR and QL variants in order to handle graded matrices effectively (see Demmel and Kahan (1990)). If
only singular values are required (that is, if NCVT ¼ NRU ¼ NCC ¼ 0), they are computed by the

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08MSF (CBDSQR=ZBDSQR)

[NP3546/20A] F08MSF (CBDSQR=ZBDSQR).1



differential qd algorithm (see Fernando and Parlett (1994)), which is faster and can achieve even greater
accuracy.

The singular vectors are normalized so that kuik ¼ kvik ¼ 1, but are determined only to within a complex
factor of absolute value 1.

4 References

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms Numer.
Math. 67 191–229

Golub G H and van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: UPLO – CHARACTER*1 Input

On entry: indicates whether B is an upper or lower bidiagonal matrix as follows:

if UPLO ¼ ’U’, B is an upper bidiagonal matrix;

if UPLO ¼ ’L’, B is a lower bidiagonal matrix.

Constraint: UPLO ¼ ’U’ or ’L’.

2: N – INTEGER Input

On entry: n, the order of the matrix B.

Constraint: N � 0.

3: NCVT – INTEGER Input

On entry: ncvt, the number of columns of the matrix V H of right singular vectors. Set NCVT ¼ 0
if no right singular vectors are required.

Constraint: NCVT � 0.

4: NRU – INTEGER Input

On entry: nru, the number of rows of the matrix U of left singular vectors. Set NRU ¼ 0 if no left
singular vectors are required.

Constraint: NRU � 0.

5: NCC – INTEGER Input

On entry: ncc, the number of columns of the matrix C. Set NCC ¼ 0 if no matrix C is supplied.

Constraint: NCC � 0.

6: D(*) – real array Input/Output

Note: the dimension of the array D must be at least maxð1;NÞ.
On entry: the diagonal elements of the bidiagonal matrix B.

On exit: the singular values in decreasing order of magnitude, unless INFO > 0 (in which case see
Section 6).

F08MSF (CBDSQR=ZBDSQR) NAG Fortran Library Manual

F08MSF (CBDSQR=ZBDSQR).2 [NP3546/20A]



7: E(*) – real array Input/Output

Note: the dimension of the array E must be at least maxð1;N� 1Þ.
On entry: the off-diagonal elements of the bidiagonal matrix B.

On exit: the array is overwritten, but if INFO > 0 see Section 6.

8: VT(LDVT,*) – complex array Input/Output

Note: the second dimension of the array VT must be at least maxð1;NCVTÞ.
On entry: if NCVT > 0, VT must contain an n by ncvt matrix. If the right singular vectors of B
are required, ncvt ¼ n and VT must contain the unit matrix; if the right singular vectors of A are

required, VT must contain the unitary matrix PH returned by F08KTF (CUNGBR=ZUNGBR) with
VECT ¼ ’P’ .

On exit: the n by ncvt matrix V H or V HPH of right singular vectors, stored by rows.

VT is not referenced if NCVT ¼ 0.

9: LDVT – INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which F08MSF
(CBDSQR=ZBDSQR) is called.

Constraints:

LDVT � maxð1;NÞ if NCVT > 0,
LDVT � 1 otherwise.

10: U(LDU,*) – complex array Input/Output

Note: the second dimension of the array U must be at least maxð1;NÞ.
On entry: if NRU > 0, U must contain an nru by n matrix. If the left singular vectors of B are
required, nru ¼ n and U must contain the unit matrix; if the left singular vectors of A are required,
U must contain the unitary matrix Q returned by F08KTF (CUNGBR=ZUNGBR) with
VECT ¼ ’Q’.

On exit: the nru by n matrix U or QU of left singular vectors, stored by columns.

U is not referenced if NRU ¼ 0.

11: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08MSF
(CBDSQR=ZBDSQR) is called.

Constraint: LDU � maxð1;NRUÞ.

12: C(LDC,*) – complex array Input/Output

Note: the second dimension of the array C must be at least maxð1;NCCÞ.
On entry: the n by ncc matrix C if NCC > 0.

On exit: C is overwritten by the matrix UHC.

C is not referenced if NCC ¼ 0.

13: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08MSF
(CBDSQR=ZBDSQR) is called.

Constraints:

LDC � maxð1;NÞ if NCC > 0,
LDC � 1 otherwise.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08MSF (CBDSQR=ZBDSQR)

[NP3546/20A] F08MSF (CBDSQR=ZBDSQR).3



14: WORK(*) – real array Workspace

Note: the dimension of the array WORK must be at least maxð1; 4 � NÞ.

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO ¼ �i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The algorithm failed to converge and INFO specifies how many off-diagonals did not converge. In
this case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a
bidiagonal matrix orthogonally equivalent to B.

7 Accuracy

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to
bidiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative
accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If �i is an exact singular value of B; and ~��i is the corresponding computed value, then

j~��i � �ij � pðm;nÞ��i

where pðm;nÞ is a modestly increasing function of m and n, and � is the machine precision. If only
singular values are computed, they are computed more accurately (that is, the function pðm;nÞ is smaller),
than when some singular vectors are also computed.

If ui is an exact left singular vector of B, and ~uui is the corresponding computed left singular vector, then
the angle �ð~uui; uiÞ between them is bounded as follows:

�ð~uui; uiÞ �
pðm;nÞ�
relgapi

where relgapi is the relative gap between �i and the other singular values, defined by

relgapi ¼ min
i 6¼j

j�i � �jj
ð�i þ �jÞ

:

A similar error bound holds for the right singular vectors.

8 Further Comments

The total number of real floating-point operations is roughly proportional to n2 if only the singular values

are computed. About 12n2 � nru additional operations are required to compute the left singular vectors

and about 12n2 � ncvt to compute the right singular vectors. The operations to compute the singular
values must all be performed in scalar mode; the additional operations to compute the singular vectors can
be vectorized and on some machines may be performed much faster.

The real analogue of this routine is F08MEF (SBDSQR=DBDSQR).

F08MSF (CBDSQR=ZBDSQR) NAG Fortran Library Manual

F08MSF (CBDSQR=ZBDSQR).4 [NP3546/20A]



9 Example

See Section 9 of the document for F08KTF (CUNGBR=ZUNGBR), which illustrates the use of the routine
to compute the singular value decomposition of a general matrix.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08MSF (CBDSQR=ZBDSQR)

[NP3546/20A] F08MSF (CBDSQR=ZBDSQR).5 (last)


	F08MSF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	UPLO
	N
	NCVT
	NRU
	NCC
	D
	E
	VT
	LDVT
	U
	LDU
	C
	LDC
	WORK
	INFO

	6 Error Indicators and Warnings
	INFO < 0
	INFO > 0

	7 Accuracy
	8 Further Comments
	9 Example

	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



