F0O8 — Least-squares and Eigenvalue Problems (LAPACK) FO08JUF (CPTEQR/ZPTEQR)

NAG Fortran Library Routine Document
FO08JUF (CPTEQR/ZPTEQR)

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Warning. The specification of the parameter WORK changed at Mark 20: the length of WORK needs to be increased.

1 Purpose

FO8JUF (CPTEQR/ZPTEQR) computes all the eigenvalues, and optionally all the eigenvectors, of a
complex Hermitian positive-definite matrix which has been reduced to tridiagonal form.

2 Specification

SUBROUTINE FO8JUF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)

ENTRY cpteqr (COMPZ, N, D, E, 7, LDZ, WORK, INFO)
INTEGER N, LDZ, INFO

real D(*), E(*), WORK(*)

complex 7 (LDZ, *)

CHARACTER*1 COMPZ

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric positive-
definite tridiagonal matrix 7. In other words, it can compute the spectral factorization of 1" as

T =27A7",

where A is a diagonal matrix whose diagonal elements are the eigenvalues \;, and Z is the orthogonal
matrix whose columns are the eigenvectors z;. Thus

Tzi:)‘izi 7;:1,2,...772.
The routine stores the real orthogonal matrix Z in a complex array, so that it may be used to compute all

the eigenvalues and eigenvectors of a complex Hermitian positive-definite matrix A which has been
reduced to tridiagonal form 7"

A= QTQH ,  where @ is unitary
= (Q2)A(Q2)".

In this case, the matrix Q must be formed explicitly and passed to FO8JUF, which is called with
COMPZ = "V’. The routines which must be called to perform the reduction to tridiagonal form and form

Q are:

full matrix FO8FSF (CHETRD/ZHETRD) + FO8FTF (CUNGTR/ZUNGTR)
full matrix, packed storage FO8GSF (CHPTRD/ZHPTRD) + FO8GTF (CUPGTR/ZUPGTR)
band matrix FO8HSF (CHBTRD/ZHBTRD) with VECT = "V’.

The routine first factorizes T' as LDL" where L is unit lower bidiagonal and D is diagonal. It forms the

bidiagonal matrix B = LD%, and then calls FOBMSF (CBDSQR/ZBDSQR) to compute the singular values
of B which are the same as the eigenvalues of 7. The method used by the routine allows high relative
accuracy to be achieved in the small eigenvalues of 7. The eigenvectors are normalized so that ||z;||, = 1,
but are determined only to within a complex factor of absolute value 1.
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4 References

Barlow J and Demmel ] W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762791

5 Parameters
1: COMPZ — CHARACTER*1 Input

On entry: indicates whether the eigenvectors are to be computed as follows:
if COMPZ = "N’, only the eigenvalues are computed (and the array Z is not referenced);

if COMPZ ="TI’, the eigenvalues and eigenvectors of 7' are computed (and the array Z is
initialised by the routine);

if COMPZ = "V’, the eigenvalues and eigenvectors of A are computed (and the array Z must
contain the matrix () on entry).

Constraint: COMPZ ="N’,’V’ or T’

2: N — INTEGER Input
On entry: n, the order of the matrix 7.
Constraint: N > 0.

3: D(*) — real array Input/Output
Note: the dimension of the array D must be at least max(1,N).
On entry: the diagonal elements of the tridiagonal matrix 7.
On exi.t: the n eigenvalues in descending order, unless INFO > 0, in which case the array is
overwritten.

4 E(*) — real array Input/Output
Note: the dimension of the array E must be at least max(1,N — 1).
On entry: the off-diagonal elements of the tridiagonal matrix 7'

On exit: the array is overwritten.

5: Z(LDZ,*) — complex array Input/Output

Note: the second dimension of the array Z must be at least max(1,N) if COMPZ = "V’ or I, and
at least 1 if COMPZ = "N’.

On entry: if COMPZ = *V’, Z must contain the unitary matrix () from the reduction to tridiagonal
form. If COMPZ = "’T’, Z need not be set.

On exit: if COMPZ =T’ or *V’, the n required orthonormal eigenvectors stored by columns; the ith
column corresponds to the ith eigenvalue, where ¢ = 1,2,...,n, unless INFO > 0.

Z is not referenced if COMPZ = "N’.

6: LDZ — INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which FOSJUF
(CPTEQR/ZPTEQR) is called.

Constraints:

LDZ > 1 if COMPZ = "N’,
LDZ > max(1,N) if COMPZ ="V’ or 'I".
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7: WORK(*) — real array Workspace
Note: the dimension of the array WORK must be at least max (1,4 x N).

8: INFO — INTEGER Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6  Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO = —i, the ¢th parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO >0

If INFO = 1, the leading minor of order 7 is not positive-definite and the Cholesky factorization of
T could not be completed. Hence T itself is not positive-definite.

If INFO = N + 4, the algorithm to compute the singular values of the Cholesky factor B failed to
converge; ¢ off-diagonal elements did not converge to zero.

7  Accuracy

The eigenvalues and eigenvectors of 7' are computed to high relative accuracy which means that if they
vary widely in magnitude, then any small eigenvalues (and corresponding eigenvectors) will be computed
more accurately than, for example, with the standard QR method. However, the reduction to tridiagonal
form (prior to calling the routine) may exclude the possibility of obtaining high relative accuracy in the
small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

To be more precise, let H be the tridiagonal matrix defined by H = DT'D, where D is diagonal with

1 -
dj; = t;;2, and hy; = 1 for all 4. If ); is an exact eigenvalue of 7" and ); is the corresponding computed

value, then
|Ai = Ail < e(n)ery(H)A;
where ¢(n) is a modestly increasing function of n, € is the machine precision, and ,(H) is the condition

number of H with respect to inversion defined by: r,(H) = || H| - |[H ||

If z; is the corresponding exact eigenvector of 7', and z; is the corresponding computed eigenvector, then
the angle 6(Z;, z;) between them is bounded as follows:

c(n)ery(H)

relgap,;
where relgap; is the relative gap between ); and the other eigenvalues, defined by
A — Al

relgap, = min ———.

9(21'7 ZZ) <

8 Further Comments

The total number of real floating-point operations is typically about 30n* if COMPZ = N’ and about 12n°
if COMPZ ="V’ or ’I’, but depends on how rapidly the algorithm converges. When COMPZ = °N’, the
operations are all performed in scalar mode; the additional operations to compute the eigenvectors when
COMPZ ="V’ or ’I’ can be vectorized and on some machines may be performed much faster.

The real analogue of this routine is FO8JGF (SPTEQR/DPTEQR).
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9 Example

To compute all the eigenvalues and eigenvectors of the complex Hermitian positive-definite matrix A,
where

6.02+0.00: —0.45+0.25¢ —1.30+ 1.74¢ 1.45 — 0.667
—0.45 — 0.25¢ 291+0.00¢  0.05+1.56:¢ —1.04+1.27¢
—1.30 — 1.74¢ 0.05 — 1.56¢ 3.29 +0.00¢ 0.14 + 1.70¢

1.4540.66: —1.04 —1.27¢ 0.14—-1.70¢  4.18 +0.00¢

A=

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users” Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* FO8JUF Example Program Text
* Mark 20 Revised. NAG Copyright 2001.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, LDA, LWORK, LDZ
PARAMETER (NMAX=8, LDA=NMAX , LWORK=64*NMAX , LDZ=NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
CHARACTER UPLO
* .. Local Arrays
Complex A(LDA,NMAX), TAU(NMAX), WORK(LWORK), Z(LDZ,NMAX)
real D(NMAX), E(NMAX), RWORK (4*NMAX)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines
EXTERNAL FO6TFF, XO04DBF, chetrd, cpteqr, cungtr
* .. Executable Statements
WRITE (NOUT,*) ’'FO8JUF Example Program Results’
* Skip heading in data file

READ (NIN,x*)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
* Read A from data file
READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN,=*) ((A(I,J),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’'L’) THEN
READ (NIN,=*) ((A(I,J),J=1,I),I=1,N)
END IF
* Reduce A to tridiagonal form T = (Q**H)*A*Q
CALL chetrd (UPLO,N,A,LDA,D,E,TAU,WORK,LWORK, INFO)
* Copy A into Z
CALL FO6TFF (UPLO,N,N,A,LDA,Z,LDZ)
* Form Q explicitly, storing the result in Z
CALL cungtr(UPLO,N,Z,LDZ,TAU,WORK,LWORK,INFO)
* Calculate all the eigenvalues and eigenvectors of A
CALL cpteqr(’'Vv’ ,N,D,E,Z,LDZ,RWORK,INFO)
WRITE (NOUT, *)
IF (INFO.GT.O) THEN

WRITE (NOUT,#*) ’'Failure to converge.’
ELSE
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* Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’'Eigenvalues’
WRITE (NOUT,99999) (D(I),I=1,N)
WRITE (NOUT, %)

IFAIL = O

CALL XO04DBF('’General’,’ ’,N,N,Z,LDZ,’'Bracketed’,’F7.4"',
+ "Eigenvectors’,’'Integer’ ,RLABS, 'Integer’,CLABS,
+ 80,0,IFAIL)

END IF
END IF
STOP

*

99999 FORMAT (8X,4(F7.4,11X,:))
END

9.2 Program Data

FO8JUF Example Program Data

4 :Value of N

'L’ :Value of UPLO

( 6.02, 0.00)

(-0.45,-0.25) ( 2.91, 0.00)

(-1.30,-1.74) ( 0.05,-1.56) ( 3.29, 0.00)

( 1.45, 0.66) (-1.04,-1.27) ( 0.14,-1.70) ( 4.18, 0.00) :End of matrix A

9.3 Program Results
FO8JUF Example Program Results
Eigenvalues
7.9995 5.9976 2.0003 0.4026
Eigenvectors
1 2 3 4

1 ( 0.7289, 0.0000) ( 0.2001, 0.4724) (-0.2133, 0.1498) ( 0.0995,-0.3573)
2 (-0.1651,-0.2067) (-0.2461, 0.3742) ( 0.7308, 0.0000) ( 0.2867,-0.3364)
3 (-0.4170,-0.1413) ( 0.4476, 0.1455) (-0.3282, 0.0471) ( 0.6890, 0.0000)
4 ( 0.1748, 0.4175) ( 0.5610, 0.0000) ( 0.5203, 0.1317) ( 0.0659, 0.4336)
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