NAG Fortran Library Routine Document

F08BAF (DGELSY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F08BAF (DGELSY) computes the minimum-norm solution to a real linear least-squares problem

$$\min_{x} \|b - Ax\|_2$$

using a complete orthogonal factorization of A. A is an m by n matrix which may be rank-deficient. Several right-hand side vectors b and solution vectors x can be handled in a single call.

2 Specification

SUBROUTINE F08BAF	(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK,							
1 LWORK, INFO)								
INTEGER	M, N, NRHS, LDA, LDB, JPVT(*), RANK, LWORK, INFO							
double precision	A(LDA,*), B(LDB,*), RCOND, WORK(*)							

The routine may be called by its LAPACK name dgelsy.

3 Description

The right-hand side vectors are stored as the columns of the m by r matrix B and the solution vectors in the n by r matrix X.

F08BAF (DGELSY) first computes a QR factorization with column pivoting

$$AP = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix},$$

with R_{11} defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R_{11} , RANK, is the effective rank of A.

Then, R_{22} is considered to be negligible, and R_{12} is annihilated by orthogonal transformations from the right, arriving at the complete orthogonal factorization

$$AP = Q \begin{pmatrix} T_{11} & 0 \\ 0 & 0 \end{pmatrix} Z.$$

The minimum-norm solution is then

$$X = PZ^T \left(\begin{array}{c} T_{11}^{-1}Q_1^{T}b \\ 0 \end{array} \right)$$

where Q_1 consists of the first RANK columns of Q.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

5	Parameters
1:	M – INTEGER Input
	On entry: m, the number of rows of the matrix A.
	Constraint: $M \ge 0$.
2:	N – INTEGER Input
	On entry: n, the number of columns of the matrix A.
	Constraint: $N \ge 0$.
3:	NRHS – INTEGER Input
5.	$On \ entry: r$, the number of right-hand sides, i.e., the number of columns of the matrices B and X .
	Constraint: NRHS ≥ 0 .
4:	A(LDA,*) – <i>double precision</i> array Input/Output
	Note: the second dimension of the array A must be at least $max(1, N)$.
	On entry: the m by n matrix A .
	On exit: has been overwritten by details of its complete orthogonal factorisation.
5:	LDA – INTEGER Input
	<i>On entry</i> : the first dimension of the array A as declared in the (sub)program from which F08BAF (DGELSY) is called.
	Constraint: $LDA \ge max(1, M)$.
6:	B(LDB,*) – <i>double precision</i> array Input/Output
	Note: the second dimension of the array B must be at least $max(1, NRHS)$.
	On entry: the m by r right-hand side matrix B .
	On exit: the n by r solution matrix X .
7:	LDB – INTEGER Input
	<i>On entry</i> : the first dimension of the array B as declared in the (sub)program from which F08BAF (DGELSY) is called.
	Constraint: $LDB \ge max(1, M, N)$.
8:	JPVT(*) – INTEGER array Input/Output
	Note: the dimension of the array JPVT must be at least $max(1, N)$.
	On entry: if JPVT $(i) \neq 0$, the <i>i</i> th column of A is permuted to the front of AP, otherwise column <i>i</i> is a free column.
	On exit: if $JPVT(i) = k$, then the <i>i</i> th column of AP was the <i>k</i> th column of A .
9:	RCOND – double precision Input
	On entry: used to determine the effective rank of A, which is defined as the order of the largest leading triangular submatrix R_{11} in the QR factorization of A, whose estimated condition number is $< 1/\text{RCOND}$.

10: RANK – INTEGER

On exit: the effective rank of A, i.e., the order of the submatrix R_{11} . This is the same as the order of the submatrix T_{11} in the complete orthogonal factorization of A.

Output

11: WORK(*) – *double precision* array

Note: the dimension of the array WORK must be at least max(1, LWORK).

On exit: if INFO = 0, WORK(1) returns the optimal LWORK.

12: LWORK – INTEGER

On entry: the dimension of the array WORK as declared in the (sub)program from which F08BAF (DGELSY) is called.

For optimal performance,

$$LWORK \ge \max(k + 2 \times N + nb \times (N + 1), 2 \times k + nb \times NRHS),$$

where $k = \min(M, N)$ and nb is the optimal block size.

If LWORK = -1, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Constraint: LWORK $\geq \max(k + 3 \times N + 1, 2 \times k + NRHS)$, where $k = \min(M, N)$.

13: INFO – INTEGER

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

 $\mathrm{INFO} < 0$

If INFO = -i, the *i*th argument had an illegal value.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details of error bounds.

8 Further Comments

The complex analogue of this routine is F08BNF (ZGELSY).

9 Example

To solve the linear least squares problem

$$\min_{x} \|b - Ax\|_2$$

for the solution, x, of minimum norm, where

$$A = \begin{pmatrix} -0.09 & 0.14 & -0.46 & 0.68 & 1.29 \\ -1.56 & 0.20 & 0.29 & 1.09 & 0.51 \\ -1.48 & -0.43 & 0.89 & -0.71 & -0.96 \\ -1.09 & 0.84 & 0.77 & 2.11 & -1.27 \\ 0.08 & 0.55 & -1.13 & 0.14 & 1.74 \\ -1.59 & -0.72 & 1.06 & 1.24 & 0.34 \end{pmatrix}$$

and

Workspace

Output

$$b = \begin{pmatrix} 7.4 \\ 4.2 \\ -8.3 \\ 1.8 \\ 8.6 \\ 2.1 \end{pmatrix}$$

A tolerance of 0.01 is used to determine the effective rank of A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

9.1 Program Text

Note: the listing of the example program presented below uses *bold italicised* terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
FO8BAF Example Program Text
*
      Mark 21 Release. NAG Copyright 2004.
*
      .. Parameters ..
      INTEGER
                       NIN, NOUT
      PARAMETER
                       (NIN=5,NOUT=6)
      INTEGER
                       MMAX, NB, NMAX
      PARAMETER
                       (MMAX=16,NB=64,NMAX=8)
      INTEGER
                       LDA, LWORK
      PARAMETER
                        (LDA=MMAX,LWORK=3*NMAX+NB*(NMAX+1))
      .. Local Scalars .
*
      DOUBLE PRECISION RCOND
      INTEGER
                       I, INFO, J, M, N, RANK
      .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(MMAX), WORK(LWORK)
      INTEGER
                       JPVT(NMAX)
      .. External Subroutines ...
*
      EXTERNAL
                      DGELSY, FO6DBF
*
      .. Executable Statements ..
      WRITE (NOUT, *) 'FO8BAF Example Program Results'
      WRITE (NOUT,*)
      Skip heading in data file
      READ (NIN, *)
      READ (NIN,*) M, N
      IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.GE.N) THEN
*
         Read A and B from data file
*
*
         READ (NIN, \star) ((A(I,J), J=1,N), I=1,M)
         READ (NIN, *) (B(I), I=1, M)
*
         Initialize JPVT to be zero so that all columns are free
*
         CALL FO6DBF(N,0,JPVT,1)
*
*
         Choose RCOND to reflect the relative accuracy of the input data
*
         RCOND = 0.01D0
*
*
         Solve the least squares problem min( norm2(b - Ax) ) for the x
*
         of minimum norm.
         CALL DGELSY(M,N,1,A,LDA,B,M,JPVT,RCOND,RANK,WORK,LWORK,INFO)
*
*
         Print solution
*
         WRITE (NOUT, *) 'Least squares solution'
         WRITE (NOUT, 99999) (B(I), I=1, N)
*
         Print the effective rank of A
*
```

```
WRITE (NOUT,*)
WRITE (NOUT,*) 'Tolerance used to estimate the rank of A'
WRITE (NOUT,99998) RCOND
WRITE (NOUT,*) 'Estimated rank of A'
WRITE (NOUT,*) 'Estimated rank of A'
WRITE (NOUT,*) 'MMAX and/or NMAX too small, and/or M.LT.N'
END IF
STOP
*
99999 FORMAT (1X,7F11.4)
99998 FORMAT (1X,7F11.4)
99997 FORMAT (1X,16)
END
```

9.2 Program Data

FO8BAF Example Program Data

6	5				:Valu	es	of	Ma	and N
-0.09 -1.56 -1.48 -1.09 0.08 -1.59	-0.43 0.84	0.89 0.77	1.09 -0.71 2.11 0.14	-0.96 -1.27	:End	of	mat	crix	κA
7.4 4.2 -8.3 1.8 8.6 2.1					:End	of	vec	ctor	c b

9.3 **Program Results**

```
F08BAF Example Program Results
Least squares solution
0.6344 0.9699 -1.4402 3.3678 3.3992
Tolerance used to estimate the rank of A
1.00E-02
Estimated rank of A
4
```