NAG Fortran Library Routine Document F07BRF (CGBTRF/ZGBTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F07BRF (CGBTRF/ZGBTRF) computes the LU factorization of a complex m by n band matrix.

2 Specification

```
SUBROUTINE F07BRF(M, N, KL, KU, AB, LDAB, IPIV, INFO) ENTRY cgbtrf (M, N, KL, KU, AB, LDAB, IPIV, INFO) INTEGER M, N, KL, KU, LDAB, IPIV(*), INFO complex AB(LDAB,*)
```

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine forms the LU factorization of a complex m by n band matrix A using partial pivoting, with row interchanges. Usually m=n, and then, if A has k_l non-zero sub-diagonals and k_u non-zero super-diagonals, the factorization has the form A=PLU, where P is a permutation matrix, L is a lower triangular matrix with unit diagonal elements and at most k_l non-zero elements in each column, and U is an upper triangular band matrix with $k_l + k_u$ super-diagonals.

Note that L is not a band matrix, but the non-zero elements of L can be stored in the same space as the sub-diagonal elements of A. U is a band matrix but with k_l additional super-diagonals compared with A. These additional super-diagonals are created by the row interchanges.

4 References

Golub G H and van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: $M \ge 0$.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N > 0.

3: KL – INTEGER *Input*

On entry: k_l , the number of sub-diagonals within the band of A.

Constraint: $KL \geq 0$.

4: KU – INTEGER *Input*

On entry: k_u , the number of super-diagonals within the band of A.

Constraint: $KU \ge 0$.

5: AB(LDAB,*) - complex array

Input/Output

Note: the second dimension of the array AB must be at least max(1, N).

On entry: the m by n band matrix A, stored in rows (k_l+1) to $(2k_l+k_u+1)$; the first k_l rows need not be set. More precisely, element $a_{i,j}$ must be stored in $AB(k_l+k_u+i-j+1,j)$ for $\max(j-k_u,1) \leq i \leq \min(j+k_l,m)$.

On exit: A is overwritten by details of the factorization: the upper triangular band matrix U with $k_l + k_u$ super-diagonals is stored in rows 1 to $(k_l + k_u + 1)$ of the array, and the multipliers used to form the matrix L are stored in rows $(k_l + k_u + 2)$ to $(2k_l + k_u + 1)$.

6: LDAB – INTEGER

Input

On entry: the first dimension of the array AB as declared in the (sub)program from which F07BRF (CGBTRF/ZGBTRF) is called.

Constraint: LDAB $\geq 2 \times KL + KU + 1$.

7: IPIV(*) – INTEGER array

Output

Note: the dimension of the array IPIV must be at least max(1, min(M, N)).

On exit: the pivot indices. Row i of the matrix A was interchanged with row IPIV(i), for $i = 1, 2, ..., \min(m, n)$.

8: INFO – INTEGER

Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO = -i, the *i*th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.

INFO > 0

If INFO = i, $u_{i,i}$ is exactly zero. The factorization has been completed but the factor U is exactly singular, and division by zero will occur if it is subsequently used to solve a system of linear equations.

7 Accuracy

The computed factors L and U are the exact factors of a perturbed matrix A + E, where

$$|E| \le c(k)\epsilon P|L||U|,$$

c(k) is a modest linear function of $k = k_l + k_u + 1$, and ϵ is the **machine precision**. This assumes $k \ll \min(m, n)$.

8 Further Comments

The total number of real floating-point operations varies between approximately $8nk_l(k_u+1)$ and $8nk_l(k_l+k_u+1)$, depending on the interchanges, assuming $m=n\gg k_l$ and $n\gg k_u$.

A call to this routine may be followed by calls to the routines:

F07BSF (CGBTRS/ZGBTRS) to solve AX = B, $A^TX = B$ or $A^HX = B$;

F07BUF (CGBCON/ZGBCON) to estimate the condition number of A.

The real analogue of this routine is F07BDF (SGBTRF/DGBTRF).

9 Example

To compute the LU factorization of the matrix A, where

$$A = \begin{pmatrix} -1.65 + 2.26i & -2.05 - 0.85i & 0.97 - 2.84i & 0.00 + 0.00i \\ 0.00 + 6.30i & -1.48 - 1.75i & -3.99 + 4.01i & 0.59 - 0.48i \\ 0.00 + 0.00i & -0.77 + 2.83i & -1.06 + 1.94i & 3.33 - 1.04i \\ 0.00 + 0.00i & 0.00 + 0.00i & 4.48 - 1.09i & -0.46 - 1.72i \end{pmatrix}$$

Here A is treated as a band matrix with 1 sub-diagonal and 2 super-diagonals.

9.1 Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
FO7BRF Example Program Text
Mark 15 Release. NAG Copyright 1991.
.. Parameters ..
                 NIN, NOUT
INTEGER
PARAMETER
                 (NIN=5, NOUT=6)
INTEGER
               MMAX, NMAX, KLMAX, KUMAX, LDAB
                (MMAX=8,NMAX=8,KLMAX=8,KUMAX=8,
PARAMETER
                 LDAB=2*KLMAX+KUMAX+1)
.. Local Scalars ..
          I, IFAIL, INFO, J, K, KL, KU, M, N
.. Local Arrays ..
complex
INTEGER
AB(LDAB,NMAX)
IPIV(NMAX)
INTEGER IPIV(NMAX)
CHARACTER CLABS(1), RLABS(1)
.. External Subroutines ..
EXTERNAL cgbtrf, XO4DFF
.. Intrinsic Functions ..
INTRINSIC MAX, MIN
.. Executable Statements ..
WRITE (NOUT,*) 'F07BRF Example Program Results'
Skip heading in data file
READ (NIN, *)
READ (NIN,*) M, N, KL, KU
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. KL.LE.KLMAX .AND. KU.LE.KUMAX)
   Read A from data file
   K = KL + KU + 1
   READ (NIN,*) ((AB(K+I-J,J),J=MAX(I-KL,1),MIN(I+KU,N)),I=1,M)
   Factorize A
   CALL cgbtrf(M,N,KL,KU,AB,LDAB,IPIV,INFO)
   Print details of factorization
   WRITE (NOUT, *)
   IFAIL = 0
   CALL XO4DFF(M,N,KL,KL+KU,AB,LDAB,'Bracketed','F7.4',
                'Details of factorization','Integer', RLABS,
               'Integer', CLABS, 80,0, IFAIL)
   Print pivot indices
   WRITE (NOUT, *)
   WRITE (NOUT,*) 'IPIV'
   WRITE (NOUT, 99999) (IPIV(I), I=1, MIN(M,N))
   IF (INFO.NE.O) WRITE (NOUT,*) 'The factor U is singular'
END IF
STOP
```

```
*
99999 FORMAT ((1X,I12,3I18))
END
```

9.2 Program Data

```
FO7BRF Example Program Data
4 4 1 2 :Values of M, N, KL and KU
(-1.65, 2.26) (-2.05,-0.85) (0.97,-2.84)
(0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) (0.59,-0.48)
(-0.77, 2.83) (-1.06, 1.94) (3.33,-1.04)
(4.48,-1.09) (-0.46,-1.72) :End of matrix A
```

9.3 Program Results

```
FO7BRF Example Program Results
```

```
Details of factorization

1 2 3 4

1 (0.0000, 6.3000) (-1.4800,-1.7500) (-3.9900, 4.0100) (0.5900,-0.4800)
2 (0.3587, 0.2619) (-0.7700, 2.8300) (-1.0600, 1.9400) (3.3300,-1.0400)
3 (0.2314, 0.6358) (4.9303,-3.0086) (-1.7692,-1.8587)
4 (0.7604, 0.2429) (0.4338, 0.1233)

IPIV
2 3 3 3 4
```