NAG Fortran Library Routine Document F06YCF (DSYMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06YCF (DSYMM) performs one of the matrix-matrix operations

$$C \leftarrow \alpha AB + \beta C$$
 or $C \leftarrow \alpha BA + \beta C$

where A is a real symmetric matrix, B and C are m by n real matrices, and α and β are real scalars.

2 Specification

```
SUBROUTINE F06YCF (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

INTEGER

M, N, LDA, LDB, LDC

double precision

CHARACTER*1

SIDE, UPLO
```

The routine may be called by its BLAS name dsymm.

3 Description

None.

4 References

None.

5 Parameters

1: SIDE – CHARACTER*1

Input

On entry: specifies whether B is operated on from the left or the right, as follows:

```
if SIDE = 'L', B is pre-multiplied from the left; if SIDE = 'R', B is post-multiplied from the right.
```

Constraint: SIDE = 'L' or 'R'.

2: UPLO – CHARACTER*1

Input

On entry: specifies whether the upper or lower triangular part of A is stored as follows:

```
if UPLO = 'U', the upper triangular part of A is stored; if UPLO = 'L', the lower triangular part of A is stored.
```

Constraint: UPLO = 'U' or 'L'.

3: M − INTEGER

Input

On entry: m, the number of rows of the matrices B and C; the order of A if SIDE = 'L'.

Constraint: $M \geq 0$.

[NP3657/21] F06YCF (DSYMM).1

4: N – INTEGER Input

On entry: n, the number of columns of the matrices B and C; the order of A if SIDE = 'R'.

Constraint: $N \geq 0$.

5: ALPHA – double precision

Input

On entry: the scalar α .

6: A(LDA,*) – *double precision* array

Input

Note: the second dimension of the array A must be at least max(1, M) if SIDE = 'L' and at least max(1, N) if SIDE = 'R'.

On entry: the symmetric matrix A; A is m by m if SIDE = 'L', or n by n if SIDE = 'R'. If UPLO = 'U', the upper triangle of A must be stored and the elements of the array below the diagonal are not referenced; if UPLO = 'L', the lower triangle of A must be stored and the elements of the array above the diagonal are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06YCF (DSYMM) is called.

Constraint: LDA $\geq \max(1, M)$ if SIDE = 'L'; LDA $\geq \max(1, N)$ if SIDE = 'R'.

8: B(LDB,*) – *double precision* array

Input

Input

Note: the second dimension of the array B must be at least max(1, N).

On entry: the m by n matrix B.

9: LDB – INTEGER

On entry: the first dimension of the array B as declared in the (sub)program from which F06YCF (DSYMM) is called.

Constraint: LDB $\geq \max(1, M)$.

10: BETA – *double precision*

Input

On entry: the scalar β .

11: C(LDC,*) – *double precision* array

Input/Output

Note: the second dimension of the array C must be at least max(1, N).

On entry: the m by n matrix C. If BETA = 0, C need not be set.

On exit: the updated matrix C.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06YCF (DSYMM) is called.

Constraint: LDC $\geq \max(1, M)$.

6 Error Indicators and Warnings

None.