NAG Fortran Library Routine Document

F06TPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F06TPF performs a QR factorization of an upper triangular matrix which has been modified by a rank-1 update:

$$\alpha x y^T + U = QR$$

where U and R are n by n complex upper triangular matrices with real diagonal elements, x and y are n element complex vectors, α is a complex scalar, and Q is an n by n complex unitary matrix.

Q is formed as the product of two sequences of plane rotations and a unitary diagonal matrix D:

$$Q^{H} = DQ_{n-1} \cdots Q_2 Q_1 P_1 P_2 \cdots P_{n-1}$$

where

 P_k is a rotation in the (k, n) plane, chosen to annihilate x_k : thus $Px = \beta e_n$, where $P = P_1 P_2 \cdots P_{n-1}$ and e_n is the last column of the unit matrix;

 Q_k is a rotation in the (k, n) plane, chosen to annihilate the (n, k) element of $(\alpha \beta e_n y^T + PU)$, and thus restore it to upper triangular form;

 $D = \text{diag}(1, \dots, 1, d_n)$, with d_n chosen to make r_{nn} real; $|d_n| = 1$.

The 2 by 2 plane rotation part of P_k or Q_k has the form

$$\begin{pmatrix} c_k & \bar{s}_k \\ -s_k & c_k \end{pmatrix}$$

with c_k real. The tangents of the rotations P_k are returned in the array X; the cosines and sines of these rotations can be recovered by calling F06BCF. The cosines and sines of the rotations Q_k are returned directly in the arrays C and S.

2 Specification

```
SUBROUTINE F06TPF (N, ALPHA, X, INCX, Y, INCY, A, LDA, C, S)INTEGERN, INCX, INCY, LDAdouble precisionC(*)complex*16ALPHA, X(*), Y(*), A(LDA,*), S(*)
```

3 Description

None.

4 References

None.

	On entry: n, the order of the matrices U and R.	
	Constraint: $N \ge 0$.	
2:	ALPHA – <i>complex*16</i> On entry: the scalar α .	Input
3:	X(*) - complex*16 array On entry: the vector x. On exit: the tangents of the rotations P_k , for $k = 1, 2,, n - 1$.	Input/Output
4:	INCX – INTEGER On entry: the increment in the subscripts of X between successive elements of x. Constraint: INCX > 0.	Input
5:	Y(*) - complex*16 array On entry: the vector y.	Input
6:	INCY – INTEGER On entry: the increment in the subscripts of Y between successive elements of y. Constraint: INCY > 0.	Input
7:	 A(LDA,*) - complex*16 array Note: the second dimension of the array A must be at least max(1, N). On entry: the n by n upper triangular matrix U. The imaginary parts of the diagonal be zero. On exit: the upper triangular matrix R. The imaginary parts of the diagonal elements and the second dimension of the diagonal elements are second dimension. 	Input/Output elements must are set to zero.
8:	LDA - INTEGERInputOn entry: the first dimension of the array A as declared in the (sub)program from which F06TPF is called.Constraint: LDA $\geq \max(1, N)$.	
9:	C(*) – <i>double precision</i> array On exit: the cosines of the rotations Q_k , for $k = 1,, n - 1$.	Output
10: 6	S(*) - complex*16 array On exit: the sines of the rotations Q_k , for $k = 1,, n - 1$; $S(n)$ holds d_n , the nth dia of D.	<i>Output</i> Igonal element

None.