NAG Fortran Library Routine Document F06TAF (ZSYMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06TAF (ZSYMV) performs the matrix-vector operation

$$y \leftarrow \alpha Ax + \beta y$$

where A is an n by n complex symmetric matrix, x and y are n element complex vectors, and α and β are complex scalars.

2 Specification

```
SUBROUTINE F06TAF (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER

N, LDA, INCX, INCY

complex*16

CHARACTER*1

UPLO
```

The routine may be called by its BLAS name zsymv.

3 Description

None.

4 References

None.

5 Parameters

1: UPLO – CHARACTER*1

Input

On entry: specifies whether the upper or lower triangular part of A is stored as follows:

```
if UPLO = 'U', the upper triangular part of A is stored; if UPLO = 'L', the lower triangular part of A is stored.
```

Constraint: UPLO = 'U' or 'L'.

2: N – INTEGER

Input

On entry: n, the order of the matrix A.

Constraint: $N \geq 0$.

3: ALPHA – complex*16

Input

On entry: the scalar α .

4: A(LDA,*) - complex*16 array

Input

Note: the second dimension of the array A must be at least max(1, N).

On entry: the n by n symmetric matrix A. If UPLO = 'U', the upper triangle of A must be stored and the elements of the array below the diagonal are not referenced; if UPLO = 'L', the lower triangle of A must be stored and the elements of the array above the diagonal are not referenced.

[NP3657/21] F06TAF (ZSYMV).1

5: LDA – INTEGER

Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TAF (ZSYMV) is called.

Constraint: LDA $\geq \max(1, N)$.

6: X(*) - complex*16 array

Input

On entry: the vector x.

7: INCX – INTEGER

Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX \neq 0.

8: BETA – *complex*16*

Input

On entry: the scalar β .

9: Y(*) - complex*16 array

Input/Output

On entry: the vector y. If BETA = 0, Y need not be set.

On exit: the updated vector y.

10: INCY – INTEGER

Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY $\neq 0$.

6 Error Indicators and Warnings

None.