NAG Fortran Library Routine Document F06SKF (ZTBSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06SKF (ZTBSV) performs one of the matrix-vector operations

$$x \leftarrow A^{-1}x$$
, $x \leftarrow A^{-T}x$ or $x \leftarrow A^{-H}x$,

where A is an n by n complex triangular band matrix with k sub-diagonals or super-diagonals, and x is an n element complex vector. A^{-T} denotes $\left(A^{T}\right)^{-1}$ or equivalently $\left(A^{-1}\right)^{T}$; A^{-H} denotes $\left(A^{H}\right)^{-1}$ or equivalently $\left(A^{-1}\right)^{H}$.

No test for singularity or near-singularity of A is included in this routine. Such tests must be performed before calling this routine.

2 Specification

```
SUBROUTINE F06SKF (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)

INTEGER

N, K, LDA, INCX

complex*16

CHARACTER*1

UPLO, TRANS, DIAG
```

The routine may be called by its BLAS name ztbsv.

3 Description

None.

4 References

None.

5 Parameters

1: UPLO – CHARACTER*1

Input

On entry: specifies whether A is upper or lower triangular as follows:

```
if UPLO = 'U', A is upper triangular; if UPLO = 'L', A is lower triangular.
```

Constraint: UPLO = 'U' or 'L'.

2: TRANS – CHARACTER*1

Input

On entry: specifies the operation to be performed as follows:

if TRANS = 'N',
$$x \leftarrow A^{-1}x$$
;
if TRANS = 'T', $x \leftarrow A^{-T}x$;
if TRANS = 'C', $x \leftarrow A^{-H}x$.

Constraint: TRANS = 'N', 'T' or 'C'.

[NP3657/21] F06SKF (ZTBSV).1

3: DIAG - CHARACTER*1

Input

On entry: specifies whether A has non-unit or unit diagonal elements, as follows:

if DIAG = 'N', the diagonal elements are stored explicitly;

if DIAG = 'U', the diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG = 'N' or 'U'.

4: N – INTEGER

Input

On entry: n, the order of the matrix A.

Constraint: $N \ge 0$.

5: K – INTEGER

Input

On entry: k, the number of sub-diagonals or super-diagonals of the matrix A.

Constraint: $K \geq 0$.

6: A(LDA,*) - complex*16 array

Input

Note: the second dimension of the array A must be at least max(1, N).

On entry: the n by n triangular band matrix A, stored in rows 1 to k+1. More precisely, if UPLO = 'U', the elements of the upper triangle of A within the band must be stored with element a_{ij} in A(k+1+i-j,j) for $\max(1,j-k) \le i \le j$; if UPLO = 'L', the elements of the lower triangle of A within the band must be stored with element a_{ij} in A(1+i-j,j) for $j \le i \le \min(n,j+k)$. If DIAG = 'U', the diagonal elements of A are not referenced, but are assumed to be 1.

7: LDA – INTEGER

Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SKF (ZTBSV) is called.

Constraint: LDA \geq K + 1.

8: X(*) - complex*16 array

Input/Output

On entry: the vector x.

On exit: the updated vector x.

9: INCX – INTEGER

Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX \neq 0.

6 Error Indicators and Warnings

None.