NAG Fortran Library Routine Document F06SDF (ZHBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06SDF (ZHBMV) performs the matrix-vector operation

$$y \leftarrow \alpha Ax + \beta y$$

where A is an n by n complex Hermitian band matrix with k sub-diagonals and k super-diagonals, x and y are n element complex vectors, and α and β are complex scalars.

2 Specification

```
SUBROUTINE FO6SDF (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER

N, K, LDA, INCX, INCY

complex*16

CHARACTER*1

UPLO
```

The routine may be called by its BLAS name zhbmv.

3 Description

None.

4 References

None.

5 Parameters

1: UPLO – CHARACTER*1

Input

On entry: specifies whether the upper or lower triangular part of A is stored as follows:

```
if UPLO = 'U', the upper triangular part of A is stored; if UPLO = 'L', the lower triangular part of A is stored.
```

Constraint: UPLO = 'U' or 'L'.

2: N – INTEGER

Input

On entry: n, the order of the matrix A.

Constraint: $N \geq 0$.

3: K – INTEGER

Input

On entry: k, the number of sub-diagonals or super-diagonals of the matrix A.

Constraint: $K \ge 0$.

4: ALPHA – *complex*16*

Input

On entry: the scalar α .

[NP3657/21] F06SDF (ZHBMV).1

5: A(LDA,*) - complex*16 array

Input

Note: the second dimension of the array A must be at least max(1, N).

On entry: the n by n Hermitian band matrix A, stored in rows 1 to k+1. More precisely, if UPLO = 'U', the elements of the upper triangle of A within the band must be stored with element a_{ij} in A(k+1+i-j,j) for $\max(1,j-k) \le i \le j$; if UPLO = 'L', the elements of the lower triangle of A within the band must be stored with element a_{ij} in A(1+i-j,j) for $j \le i \le \min(n,j+k)$.

6: LDA – INTEGER

On entry: the first dimension of the array A as declared in the (sub)program from which F06SDF (ZHBMV) is called.

Constraint: LDA \geq K + 1.

7: X(*) - complex*16 array

Input

On entry: the vector x.

8: INCX – INTEGER

Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX \neq 0.

9: BETA – *complex*16*

Input

On entry: the scalar β .

10: Y(*) - complex*16 array

Input/Output

On entry: the vector y. If BETA = 0, Y need not be set.

On exit: the updated vector y.

11: INCY – INTEGER

Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY \neq 0.

6 Error Indicators and Warnings

None.