NAG Fortran Library Routine Document

F06SCF (ZHEMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F06SCF (ZHEMV) performs the matrix-vector operation

 $y \gets \alpha A x + \beta y$

where A is an n by n complex Hermitian matrix, x and y are n element complex vectors, and α and β are complex scalars.

2 Specification

SUBROUTINE F06SCF (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)INTEGERN, LDA, INCX, INCYcomplex*16ALPHA, A(LDA,*), X(*), BETA, Y(*)CHARACTER*1UPLO

The routine may be called by its BLAS name *zhemv*.

3 Description

None.

4 References

None.

5 Parameters

1: UPLO – CHARACTER*1

On entry: specifies whether the upper or lower triangular part of A is stored as follows:

if UPLO = 'U', the upper triangular part of A is stored; if UPLO = 'L', the lower triangular part of A is stored.

Constraint: UPLO = 'U' or 'L'.

2: N – INTEGER

On entry: n, the order of the matrix A.

Constraint: $N \ge 0$.

3: ALPHA – *complex*16*

On entry: the scalar α .

4: A(LDA,*) - complex*16 array

Note: the second dimension of the array A must be at least max(1, N).

On entry: the n by n Hermitian matrix A. If UPLO = 'U', the upper triangle of A must be stored and the elements of the array below the diagonal are not referenced; if UPLO = 'L', the lower triangle of A must be stored and the elements of the array above the diagonal are not referenced.

Input

Input

Input

Input

5:	LDA – INTEGER	Input
	<i>On entry</i> : the first dimension of the array A as declared in the (sub)program from (ZHEMV) is called.	which F06SCF
	<i>Constraint</i> : $LDA \ge max(1, N)$.	
6:	X(*) – <i>complex*16</i> array	Input
	On entry: the vector x .	
7:	INCX – INTEGER	Input
	On entry: the increment in the subscripts of X between successive elements of x .	
	Constraint: INCX $\neq 0$.	
8:	BETA – <i>complex*16</i>	Input
	On entry: the scalar β .	
9:	On entry: the scalar β . Y(*) - complex*16 array	Input/Output
9:		Input/Output
9:	Y(*) – <i>complex*16</i> array	Input/Output
9: 10:	Y(*) - complex*16 array On entry: the vector y. If BETA = 0, Y need not be set.	Input/Output Input
	Y(*) - complex*16 array On entry: the vector y. If BETA = 0, Y need not be set. On exit: the updated vector y.	
	Y(*) - complex*16 array On entry: the vector y. If BETA = 0, Y need not be set. On exit: the updated vector y. INCY - INTEGER	

6 Error Indicators and Warnings

None.