NAG Fortran Library Routine Document

F06QSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06QSF transforms an n by n real upper spiked matrix H to upper triangular form R by applying a real orthogonal matrix P from the left or the right. P is formed as a sequence of plane rotations in planes k_1 to k_2 .

If SIDE = 'L', H is assumed to have a row spike, with non-zero elements $h_{k_2,k}$ for $k=k_1,k_1+1,\ldots,k_2-1$. The rotations are applied from the left:

$$PH = R$$
, where $P = P_{k_2-1} \cdots P_{k_1+1} P_{k_1}$,

and P_k is a rotation in the (k, k_2) plane.

If SIDE = 'R', H is assumed to have a column spike, with non-zero elements h_{k+1,k_1} for $k=k_1,k_1+1,\ldots,k_2-1$. The rotations are applied from the right:

$$HP^{T} = R$$
, where $P = P_{k_1} P_{k_1+1} \cdots P_{k_2-1}$,

and P_k is a rotation in the $(k_1, k+1)$ plane.

The 2 by 2 plane rotation part of P_k has the form

$$\begin{pmatrix} c_k & s_k \\ -s_k & c_k \end{pmatrix}$$
.

2 Specification

SUBROUTINE F06QSF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER

N, K1, K2, LDA

double precision

C(*), S(*), A(LDA,*)

CHARACTER*1

SIDE

3 Description

None.

4 References

None.

5 Parameters

1: SIDE – CHARACTER*1

Input

On entry: specifies whether H is operated on from the left or the right, as follows:

if SIDE = 'L', H is pre-multiplied from the left; if SIDE = 'R', H is post-multiplied from the right.

Constraint: SIDE = 'L' or 'R'.

[NP3657/21] F06QSF.1

2: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: $N \geq 0$.

3: K1 – INTEGER Input

4: K2 – INTEGER

Input

On entry: the values k_1 and k_2 .

5: C(*) – *double precision* array

Output

On exit: C(k) holds c_k , the cosine of the rotation P_k , for $k = k_1, \dots, k_2 - 1$.

6: S(*) – *double precision* array

Input/Output

On entry: the non-zero elements of the spike of H: S(k) must hold $h_{k_2,k}$ if SIDE = 'L', and h_{k+1,k_1} if SIDE = 'R', for $k = k_1, k_1 + 1, \dots, k_2 - 1$.

On exit: S(k) holds s_k , the sine of the rotation P_k , for $k = k_1, \dots, k_2 - 1$.

7: A(LDA,*) – *double precision* array

Input/Output

Note: the second dimension of the array A must be at least max(1, N).

On entry: the upper triangular part of the n by n upper spiked matrix H.

On exit: the upper triangular matrix R.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QSF is called.

Constraint: LDA $\geq \max(1, N)$.

6 Error Indicators and Warnings

None.

F06QSF.2 (last) [NP3657/21]