NAG Fortran Library Routine Document

F06QPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F06QPF performs a QR factorization of an upper triangular matrix which has been modified by a rank-1 update:

$$\alpha x y^T + U = QR$$

where U and R are n by n real upper triangular matrices, x and y are n element real vectors, α is a real scalar, and Q is an n by n real orthogonal matrix.

Q is formed as the product of two sequences of plane rotations:

$$Q^T = Q_{n-1} \cdots Q_2 Q_1 P_1 P_2 \cdots P_{n-1}$$

where

 P_k is a rotation in the (k, n) plane, chosen to annihilate x_k : thus $Px = \beta e_n$, where $P = P_1 P_2 \cdots P_{n-1}$ and e_n is the last column of the unit matrix;

 Q_k is a rotation in the (k, n) plane, chosen to annihilate the (n, k) element of $(\alpha \beta e_n y^T + PU)$, and thus restore it to upper triangular form.

The 2 by 2 plane rotation part of P_k or Q_k has the form

$$\begin{pmatrix} c_k & s_k \\ -s_k & c_k \end{pmatrix}$$
.

The tangents of the rotations P_k are returned in the array X; the cosines and sines of these rotations can be recovered by calling F06BCF. The cosines and sines of the rotations Q_k are returned directly in the arrays C and S.

2 Specification

```
SUBROUTINE F06QPF (N, ALPHA, X, INCX, Y, INCY, A, LDA, C, S)INTEGERN, INCX, INCY, LDAdouble precisionALPHA, X(*), Y(*), A(LDA,*), C(*), S(*)
```

3 Description

None.

4 References

None.

5 Parameters

1: N – INTEGER

On entry: n, the order of the matrices U and R. Constraint: $N \ge 0$. Input

F06QPF

2:	ALPHA – double precision	Input
	On entry: the scalar α .	
3:	X(*) – <i>double precision</i> array	Input/Output
	On entry: the vector x .	
	On exit: the tangents of the rotations P_k , for $k = 1, 2,, n - 1$.	
4:	INCX – INTEGER	Input
	On entry: the increment in the subscripts of X between successive elements of x .	
	Constraint: $INCX > 0$.	
5:	Y(*) – <i>double precision</i> array	Input
	On entry: the vector y.	
6:	INCY – INTEGER	Input
	On entry: the increment in the subscripts of Y between successive elements of y .	
	<i>Constraint</i> : $INCY > 0$.	
7:	A(LDA,*) – <i>double precision</i> array	Input/Output
	Note: the second dimension of the array A must be at least $max(1, N)$.	
	On entry: the n by n upper triangular matrix U .	
	On exit: the upper triangular matrix R .	
8:	LDA – INTEGER	Input
	<i>On entry</i> : the first dimension of the array A as declared in the (sub)program from wh called.	ich F06QPF is
	Constraint: $LDA \ge max(1, N)$.	
9:	C(*) – <i>double precision</i> array	Output
	On exit: the cosines of the rotations Q_k , for $k = 1,, n - 1$.	
10:	S(*) – <i>double precision</i> array	Output
	On exit: the sines of the rotations Q_k , for $k = 1,, n - 1$.	
6	Error Indicators and Warnings	

6 Error Indicators and Warnings

None.