NAG Fortran Library Routine Document F06PLF (DTPSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06PLF (DTPSV) performs one of the matrix-vector operations

$$x \leftarrow A^{-1}x$$
 or $x \leftarrow A^{-T}x$,

where A is an n by n real triangular matrix, stored in packed form, and x is an n element real vector. A^{-T} denotes $(A^T)^{-1}$ or equivalently $(A^{-1})^T$.

No test for singularity or near-singularity of A is included in this routine. Such tests must be performed before calling this routine.

2 Specification

SUBROUTINE F06PLF (UPLO, TRANS, DIAG, N, AP, X, INCX)

INTEGER

N, INCX

double precision

CHARACTER*1

UPLO, TRANS, DIAG

The routine may be called by its BLAS name dtpsv.

3 Description

None.

4 References

None.

5 Parameters

1: UPLO – CHARACTER*1

Input

On entry: specifies whether A is upper or lower triangular as follows:

if UPLO = 'U', A is upper triangular; if UPLO = 'L', A is lower triangular.

Constraint: UPLO = 'U' or 'L'.

2: TRANS - CHARACTER*1

Input

On entry: specifies the operation to be performed as follows:

if TRANS = 'N',
$$x \leftarrow A^{-1}x$$
;
if TRANS = 'T' or 'C', $x \leftarrow A^{-T}x$.

Constraint: TRANS = 'N', 'T' or 'C'.

[NP3657/21]

3: DIAG - CHARACTER*1

Input

On entry: specifies whether A has non-unit or unit diagonal elements, as follows:

if DIAG = 'N', the diagonal elements are stored explicitly;

if DIAG = 'U', the diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG = 'N' or 'U'.

4: N – INTEGER

Input

On entry: n, the order of the matrix A.

Constraint: $N \geq 0$.

5: AP(*) – *double precision* array

Input

Note: the dimension of the array AP must be at least $max(1, N \times (N+1)/2)$.

On entry: the n by n triangular matrix A, packed by columns. More precisely, if UPLO = 'U', the upper triangle of A must be stored with element a_{ij} in AP(i+j(j-1)/2) for $i \le j$; if UPLO = 'L', the lower triangle of A must be stored with element a_{ij} in AP(i+(2n-j)(j-1)/2) for $i \ge j$. If DIAG = 'U', the diagonal elements of A are assumed to be 1, and are not referenced; the same storage scheme is used whether DIAG = 'N' or 'U'.

6: X(*) – **double precision** array

Input/Output

On entry: the vector x.

On exit: the updated vector x.

7: INCX – INTEGER

Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX \neq 0.

6 Error Indicators and Warnings

None.