NAG Fortran Library Routine Document

F06CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06CBF generates a complex Givens plane rotation with parameters c (complex) and s (real), such that, given complex a and b:

$$\begin{pmatrix} \bar{c} & s \\ -s & c \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix},$$

If b is real, then d is also real. On exit, b is overwritten by t, the tangent of the rotation; c and s can be reconstructed from the single stored value t, by a subsequent call to F06CDF.

If $|b| < \epsilon |a|$ and Im a = 0, where ϵ is the **machine precision**, the routine sets c = 1 and s = |t|.

If $|b| < \epsilon |a|$ and Im $a \neq 0$, the routine sets

$$c = \frac{\mathrm{sign}(\mathrm{Re}\,a)a}{|a|} \quad \text{ and } \quad s = |t|$$

Note that t is always set to b/a, unless overflow would occur, in which case the routine returns the value of the expression

FO6CLF(B,A,FAIL)

2 Specification

```
SUBROUTINE FO6CBF (A, B, C, S)

double precision S

complex*16 A, B, C
```

3 Description

None.

4 References

None.

5 Parameters

1: A – *complex*16*

Input/Output

On entry: the value a, the 1st element of the vector which determines the rotation.

On exit: the value d.

2: B – *complex*16*

Input/Output

On entry: the value b, the 2nd element of the vector which determines the rotation.

On exit: the value t, the tangent of the rotation.

3: C - complex*16

Output

On exit: the value c, the cosine of the rotation.

[NP3657/21]

4: S - double precision

Output

On exit: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

F06CBF.2 (last) [NP3657/21]