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1 Scope of the Chapter

This chapter is concerned with the solution of the matrix equation AX ¼ B, where B may be a single
vector or a matrix of multiple right-hand sides. The matrix A may be real, complex, symmetric,
Hermitian, positive-definite, positive-definite Toeplitz or banded. It may also be rectangular, in which case
a least-squares solution is obtained.

For a general introduction to sparse systems of equations, see the F11 Chapter Introduction, which
currently provides routines for large sparse systems. Some routines for sparse problems are also included
in this chapter; they are described in Section 3.4.

2 Background to the Problems

A set of linear equations may be written in the form

Ax ¼ b

where the known matrix A, with real or complex coefficients, is of size m by n, (m rows and n columns),
the known right-hand vector b has m components (m rows and one column), and the required solution
vector x has n components (n rows and one column). There may also be p vectors bi, i ¼ 1; 2; . . . ; p on
the right-hand side and the equations may then be written as

AX ¼ B,

the required matrix X having as its p columns the solutions of Axi ¼ bi, i ¼ 1; 2; . . . ; p. Some routines
deal with the latter case, but for clarity only the case p ¼ 1 is discussed here.

The most common problem, the determination of the unique solution of Ax ¼ b, occurs when m ¼ n and
A is not singular, that is rank Að Þ ¼ n. This is discussed in Section 2.1 below. The next most common
problem, discussed in Section 2.2 below, is the determination of the least-squares solution of Ax ’ b
required when m > n and rank Að Þ ¼ n, i.e., the determination of the vector x which minimizes the norm
of the residual vector r ¼ b�Ax. All other cases are rank deficient, and they are treated in Section 2.3.

2.1 Unique Solution of Ax=b

Most routines in this chapter solve this particular problem. The computation starts with the triangular
decomposition A ¼ PLU , where L and U are respectively lower and upper triangular matrices and P is a
permutation matrix, chosen so as to ensure that the decomposition is numerically stable. The solution is
then obtained by solving in succession the simpler equations

Ly ¼ PTb
Ux ¼ y

the first by forward-substitution and the second by back-substitution.

If A is real symmetric and positive-definite, U ¼ LT , while if A is complex Hermitian and positive-

definite, U ¼ LH ; in both these cases P is the identity matrix (i.e., no permutations are necessary). In all
other cases either U or L has unit diagonal elements.

Due to rounding errors the computed ‘solution’ x0, say, is only an approximation to the true solution x.
This approximation will sometimes be satisfactory, agreeing with x to several figures, but if the problem is
ill-conditioned then x and x0 may have few or even no figures in common, and at this stage there is no
means of estimating the ‘accuracy’ of x0.

There are three possible approaches to estimating the accuracy of a computed solution.

One way to do so, and to ‘correct’ x0 when this is meaningful (see next paragraph), involves computing
the residual vector r ¼ b�Ax0 in extended precision arithmetic, and obtaining a correction vector d by
solving PLUd ¼ r. The new approximate solution x0 þ d is usually more accurate and the correcting
process is repeated until (a) further corrections are negligible or (b) they show no further decrease.

It must be emphasised that the ‘true’ solution x may not be meaningful, that is correct to all figures quoted,
if the elements of A and b are known with certainty only to say p figures, where p is smaller than the
word-length of the computer. The first correction vector d will then give some useful information about
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the number of figures in the ‘solution’ which probably remain unchanged with respect to maximum
possible uncertainties in the coefficients.

An alternative approach to assessing the accuracy of the solution is to compute or estimate the condition
number of A, defined as

� Að Þ ¼ Ak k: A�1
�� ��.

Roughly speaking, errors or uncertainties in A or b may be amplified in the solution by a factor � Að Þ.
Thus, for example, if the data in A and b are only accurate to 5 digits and � Að Þ � 103, then the solution

cannot be guaranteed to have more than 2 correct digits. If � Að Þ � 105, the solution may have no
meaningful digits.

To be more precise, suppose that

Ax ¼ b and Aþ �Að Þ xþ �xð Þ ¼ bþ �b.

Here �A and �b represent perturbations to the matrices A and b which cause a perturbation �x in the
solution. We can define measures of the relative sizes of the perturbations in A, b and x as

�A ¼ �Ak k
Ak k , �b ¼

�bk k
bk k and �x ¼ �xk k

xk k respectively.

Then

�x � � Að Þ
1� � Að Þ�A

�A þ �bð Þ

provided that � Að Þ�A < 1. Often � Að Þ�A � 1 and then the bound effectively simplifies to

�x � � Að Þ �A þ �bð Þ.
Hence, if we know � Að Þ, �A and �b, we can compute a bound on the relative errors in the solution. Note
that �A, �b and �x are defined in terms of the norms of A, b and x. If A, b or x contains elements of
widely differing magnitude, then �A, �b and �x will be dominated by the errors in the larger elements, and
�x will give no information about the relative accuracy of smaller elements of x.

A third way to obtain useful information about the accuracy of a solution is to solve two sets of equations,
one with the given coefficients, which are assumed to be known with certainty to p figures, and one with
the coefficients rounded to (p� 1) figures, and to count the number of figures to which the two solutions
agree. In ill-conditioned problems this can be surprisingly small and even zero.

2.2 The Least-squares Solution of Ax’b, m>n, rankA=n

The least-squares solution is the vector x̂ which minimizes the sum of the squares of the residuals,

S ¼ b�Ax̂ð ÞT b�Ax̂ð Þ ¼ b�Ax̂k k2
2
.

The solution is obtained in two steps.

(i) Householder Transformations are used to reduce A to ‘simpler form’ via the equation QA ¼ R, where
R has the appearance

R̂

0

 !

with R̂ a non-singular upper triangular n by n matrix and 0 a zero matrix of shape m� nð Þ by n.
Similar operations convert b to Qb ¼ c, where

c ¼ c1
c2

� �

with c1 having n rows and c2 having (m� n) rows.

(ii) The required least-squares solution is obtained by back-substitution in the equation

R̂x̂ ¼ c1.

F04 – Simultaneous Linear Equations Introduction – F04

[NP3657/21] F04.3



Again due to rounding errors the computed x̂0 is only an approximation to the required x̂ , but as in
Section 2.1, this can be improved by ‘iterative refinement’. The first correction d is the solution of the
least-squares problem

Ad ¼ b�Ax̂0 ¼ r

and since the matrix A is unchanged, this computation takes less time than that of the original x̂0. The
process can be repeated until further corrections are (a) negligible or (b) show no further decrease.

2.3 Rank-deficient Cases

If, in the least-squares problem just discussed, rank Að Þ < n, then a least-squares solution exists but it is
not unique. In this situation it is usual to ask for the least-squares solution ‘of minimal length’, i.e., the
vector x which minimizes xk k2, among all those x for which b� Axk k2 is a minimum.

This can be computed from the Singular Value Decomposition (SVD) of A, in which A is factorized as

A ¼ QDPT

where Q is an m by n matrix with orthonormal columns, P is an n by n orthogonal matrix and D is an n
by n diagonal matrix. The diagonal elements of D are called the ‘singular values’ of A; they are non-
negative and can be arranged in decreasing order of magnitude:

d1 � d2 � � � � � dn � 0.

The columns of Q and P are called respectively the left and right singular vectors of A. If the singular
values drþ1; . . . ; dn are zero or negligible, but dr is not negligible, then the rank of A is taken to be r (see
also Section 2.4) and the minimal length least-squares solution of Ax ’ b is given by

x̂ ¼ DyQTb

where Dy is the diagonal matrix with diagonal elements d�1
1 ; d�1

2 ; . . . ; d�1
r ; 0; . . . ; 0.

The SVD may also be used to find solutions to the homogeneous system of equations Ax ¼ 0, where A is
m by n. Such solutions exist if and only if rank Að Þ < n, and are given by

x ¼
Xn
i¼rþ1

�ipi

where the �i are arbitrary numbers and the pi are the columns of P which correspond to negligible
elements of D.

The general solution to the rank-deficient least-squares problem is given by x̂þ x, where x̂ is the minimal
length least-squares solution and x is any solution of the homogeneous system of equations Ax ¼ 0.

2.4 The Rank of a Matrix

In theory the rank is r if n� r elements of the diagonal matrix D of the singular value decomposition are
exactly zero. In practice, due to rounding and/or experimental errors, some of these elements have very
small values which usually can and should be treated as zero.

For example, the following 5 by 8 matrix has rank 3 in exact arithmetic:

22 14 �1 �3 9 9 2 4

10 7 13 �2 8 1 �6 5

2 10 �1 13 1 �7 6 0

3 0 �11 �2 �2 5 5 �2

7 8 3 4 4 �1 1 2

0
BBBB@

1
CCCCA.

On a computer with 7 decimal digits of precision the computed singular values were

3:5� 101, 2:0� 101, 2:0� 101, 1:3� 10�6, 5:5� 10�7

and the rank would be correctly taken to be 3.

It is not, however, always certain that small computed singular values are really zero. With the 7 by 7
Hilbert matrix, for example, where aij ¼ 1= iþ j� 1ð Þ, the singular values are
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1:7, 2:7� 10�1, 2:1� 10�2, 1:0� 10�3, 2:9� 10�5, 4:9� 10�7, 3:5� 10�9.

Here there is no clear cut-off between small (i.e., negligible) singular values and larger ones. In fact, in
exact arithmetic, the matrix is known to have full rank and none of its singular values is zero. On a
computer with 7 decimal digits of precision, the matrix is effectively singular, but should its rank be taken
to be 6, or 5, or 4?

It is therefore impossible to give an infallible rule, but generally the rank can be taken to be the number of
singular values which are neither zero nor very small compared with other singular values. For example, if

there is a sharp decrease in singular values from numbers of order unity to numbers of order 10�7, then the
latter will almost certainly be zero in a machine in which 7 significant decimal figures is the maximum
accuracy. Similarly for a least-squares problem in which the data is known to about four significant figures

and the largest singular value is of order unity then a singular value of order 10�4 or less should almost
certainly be regarded as zero.

It should be emphasised that rank determination and least-squares solutions can be sensitive to the scaling
of the matrix. If at all possible the units of measurement should be chosen so that the elements of the
matrix have data errors of approximately equal magnitude.

2.5 Generalized Linear Least-squares Problems

The simple type of linear least-squares problem described in Section 2.2 can be generalized in various
ways.

1. Linear least-squares problems with equality constraints:

find x to minimize S ¼ c�Axk k2
2

subject to Bx ¼ d,

where A is m by n and B is p by n, with p � n � mþ p. The equations Bx ¼ d may be regarded as
a set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

A
B

� �
x ¼ c

d

� �
,

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least-squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix
A
B

� �
has full column rank n. (For linear

least-squares problems with inequality constraints, refer to Chapter E04.)

2. General Gauss–Markov linear model problems:

minimize yk k2 subject to d ¼ AxþBy,

where A is m by n and B is m by p, with n � m � nþ p. When B ¼ I, the problem reduces to an
ordinary linear least-squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least-squares problem:

find x to minimize B�1 d�Axð Þ
�� ��

2
.

The problem has a unique solution on the assumptions that A has full column rank n, and the matrix
A;Bð Þ has full row rank m.

2.6 Calculating the Inverse of a Matrix

The routines in this chapter can also be used to calculate the inverse of a square matrix A by solving the
equation

AX ¼ I

where I is the identity matrix. However, solving the equations AX ¼ B by calculation of the inverse of

the coefficient matrix A, i.e., by X ¼ A�1B, is definitely not recommended.
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Similar remarks apply to the calculation of the pseudo inverse of a singular or rectangular matrix.

3 Recommendations on Choice and Use of Available Routines

Note: please refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Black Box and General Purpose Routines

Most of the routines in this chapter are categorised as Black Box routines or general purpose routines.

Black Box routines solve the equations Axi ¼ bi, for i ¼ 1; 2; . . . ; p, in a single call with the matrix A and
the right-hand sides bi being supplied as data. These are the simplest routines to use and are suitable when
all the right-hand sides are known in advance and do not occupy too much storage.

General purpose routines, in general, require a previous call to a routine in Chapters F01, F03 or F07 to
factorize the matrix A. This factorization can then be used repeatedly to solve the equations for one or
more right-hand sides which may be generated in the course of the computation. The Black Box routines
simply call a factorization routine and then a general purpose routine to solve the equations.

The routine F04QAF which uses an iterative method for sparse systems of equations does not fit easily into
this categorisation, but is classified as a general purpose routine in the decision trees and indexes.

3.2 Systems of Linear Equations

Most of the routines in this chapter solve linear equations Ax ¼ b when A is n by n and a unique solution
is expected (case 2:1). If this turns out to be untrue the routines go to a failure exit. The matrix A may be
‘general’ real or complex, or may have special structure or properties, e.g., it may be banded, tridiagonal,
almost block-diagonal, sparse, symmetric, Hermitian, positive-definite (or various combinations of these).

It must be emphasised that it is a waste of computer time and space to use an inappropriate routine, for
example one for the complex case when the equations are real. It is also unsatisfactory to use the special
routines for a positive-definite matrix if this property is not known in advance.

Routines are given for calculating the approximate solution, that is solving the linear equations just once,
and also for obtaining the accurate solution by successive iterative corrections of this first approximation
using additional precision arithmetic, as described in Section 2.1. The latter, of course, are more costly in
terms of time and storage, since each correction involves the solution of n sets of linear equations and
since the original A and its LU decomposition must be stored together with the first and successively
corrected approximations to the solution. In practice the storage requirements for the ‘corrected’ routines
are about double those of the ‘approximate’ routines, though the extra computer time may not be
prohibitive since the same matrix and the same LU decomposition is used in every linear equation
solution.

A number of the Black Box routines in this chapter return estimates of the condition number and the
forward error, along with the solution of the equations. But for those routines that do no return a condition
estimate two routines are provided – F04YCF for real matrices, F04ZCF for complex matrices – which can

return a cheap but reliable estimate of A�1
�� ��, and hence an estimate of the condition number � Að Þ (see

Section 2.1). These routines can also be used in conjunction with most of the linear equation solving
routines in Chapter F11: further advice is given in the routine documents.

Other routines for solving linear equation systems, computing inverse matrices, and estimating condition
numbers can be found in Chapter F07, which contains LAPACK software.

3.3 Linear Least-squares Problems

The majority of the routines for solving linear least-squares problems are to be found in Chapter F08.

For case 2:2, when m � n and a unique least-squares solution is expected, there are two routines for a
general real A, one of which (F04JGF) computes a first approximation and the other (F04AMF) computes
iterative corrections. If it transpires that rank Að Þ < n, so that the least-squares solution is not unique, then
F04AMF takes a failure exit, but F04JGF proceeds to compute the minimal length solution by using the
SVD (see below).
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If A is expected to be of less than full rank then one of the routines for calculating the minimal length
solution may be used.

For m � n the use of the SVD is not significantly more expensive than the use of routines based upon the
QR factorization.

Problems with linear equality constraints can be solved by F08ZBF (DGGGLM) (for real data) or by
F08ZPF (ZGGGLM) (for complex data), provided that the problems are of full rank. Problems with linear
inequality constraints can be solved by E04NCF=E04NCA in Chapter E04.

General Gauss–Markov linear model problems, as formulated in Section 2.5, can be solved by F08ZAF
(DGGLSE) (for real data) or by F08ZNF (ZGGLSE) (for complex data).

3.4 Sparse Matrix Routines

Routines specifically for sparse matrices are appropriate only when the number of non-zero elements is

very small, less than, say, 10% of the n2 elements of A, and the matrix does not have a relatively small
band width.

Chapter F11 contains routines for both the direct and iterative solution of real sparse linear systems. There
are two routines in Chapter F04 for solving sparse linear equations (F04AXF and F04QAF). F04AXF
utilizes a factorization of the matrix A obtained from F01BRF or F01BSF, while F04QAF uses an iterative

technique and requires a user-supplied function to compute matrix-vector products Ac and ATc for any
given vector c.

F04QAF solves sparse least-squares problems by an iterative technique, and also allows the solution of
damped (regularised) least-squares problems (see the routine document for details).

4 Decision Trees

The name of the routine (if any) that should be used to factorize the matrix A is given in brackets after the
name of the routine for solving the equations.
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Tree 1: Black Box routines for unique solution of Ax ¼ b (Real matrix)

Is A symmetric?
yes

Is A positive-definite?
yes

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04BGF (see Note 1)
or F07JAF and

F07JBF (see Note 2)

no

F04BFF (see Note 1)
or F07HAF or

F07HBF (see Note 2)

no

Do you require an
accurate solution
using iterative
refinement?

yes

F04ABF or F04ASF
(see Note 3)

no

Is one triangle of A
stored as a linear
array?

yes

F04BEF (see Note 1)
or F07GAF or

F07GBF (see Note 2)

no

F04BDF (see Note 1)
or F07FAF or

F07FBF (see Note 2)

no

Is one triangle of A
stored as a linear
array?

yes

F04BJF (see Note 1)
or F07PAF or

F07PBF (see Note 2)

no

F04BHF (see Note 1)
or F07MAF or

F07MBF (see Note 2)

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04BCF (see Note 1)
or F07CAF or

F07CBF (see Note 2)

no

F04BBF (see Note 1)
or F07BAF or

F07BBF (see Note 2)

no

Do you require an
accurate solution
using iterative
refinement?

yes

F04AEF or F04ATF
(see Note 3)

no

F04BAF (see Note 1)
or F07AAF or

F07ABF (see Note 2)
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Tree 2: Black Box routines for unique solution of Ax ¼ b (Complex matrix)

Is A Hermitian?
yes

Is A positive-definite?
yes

Is A a band matrix?
yes

Is A bidiagonal?
yes

F04CGF (see Note 1)
or F07JNF or F07JPF

(see Note 2)

no

F04CFF (see Note 1)
or F07HNF or

F07HPF (see Note 2)

no

Is one triangle of A
stored as a linear
array?

yes

F04CEF (see Note 1)
or F07GNF or

F07GPF (see Note 2)

no

F04CDF (see Note 1)
or F07FNF or

F07FPF (see Note 2)

no

Is one triangle of A
stored as a linear
array?

yes

F04CJF (see Note 1)
or F07PNF or

F07PPF (see Note 2)

no

F04CHF (see Note 1)
or F07MNF or

F07MPF (see Note 2)

no

Is A symmetric?
yes

Is one triangle of A
stored as a linear
array?

yes

F04DJF (see Note 1)
or F07QNF or

F07QPF (see Note 2)

no

F04DHF (see Note 1)
or F07NNF or

F07NPF (see Note 2)

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04CCF (see Note 1)
or F07CNF or

F07CPF (see Note 2)

no

F04CBF (see Note 1)
or F07BNF or

F07BPF (see Note 2)

no

F04CAF (see Note 1)
or F07ANF or

F07APF (see Note 2)
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Tree 3: General purpose routines for unique solution of Ax ¼ b (Real matrix)

Is A a sparse matrix
and not banded? yes

Chapter F11 or
F04AXF (F01BRF or
F01BSF) or F04QAF

no

Is A symmetric?
yes

Is A positive-definite?
yes

Is A band matrix?
yes

Variable band width?
yes

F04MCF (F01MCF)

no

F07HEF (F07HDF)

no

Is A a Toeplitz
matrix? yes

Are the equations the
Yule–Walker
equations?

yes
F04MEF

no

F04MFF

no

Is one triangle of A
stored as a linear
array?

yes
F07GEF (F07GDF)

no

F07FEF (F07FDF)

no

Is one triangle of A
stored as a linear
array?

yes
F07PEF (F07PDF)

no

F07MEF (F07MDF)

no

Is A triangular?
yes

Is A a band matrix?
yes

F07VEF

no

Is A stored as a linear
array? yes

F07UEF

no

F07TEF

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04LEF (F01LEF)

no

Is A almost block
diagonal? yes

F04LHF (F01LHF)

no

F07BEF (F07BDF)

no

F07AEF (F07ADF)
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Tree 4: General purpose routines for unique solution of Ax ¼ b (Complex matrix)

Is A a sparse matrix and not
banded? yes

Chapter F11

no

Is A Hermitian?
yes

Is A positive-definite?
yes

Is A a band matrix?
yes

F07HSF (F07HRF)

no

Is one triangle of A stored as
a linear array? yes

F07GSF (F07GRF)

no

F07FSF (F07FRF)

no

Is one triangle of A stored as
a linear array? yes

F07PSF (F07PRF)

no

F07MSF (F07MRF)

no

Is A symmetric?
yes

Is one triangle of A stored as
a linear array? yes

F07QSF (F07QRF)

no

F07NSF (F07NRF)

no

Is A triangular?
yes

Is A a band matrix?
yes

F07VSF

no

Is A stored as a linear array?
yes

F07USF

no

F07TSF

no

Is A a band matrix?
yes

F07BSF (F07BRF)

no

F07ASF (F07ARF)
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Tree 5: Least-squares and homogeneous equations (without constraints)

Is the problem Ax ¼ 0?
yes

Is m < n?
yes

F04JDF

no

F04JAF

no

Is A sparse?
yes

F04QAF

no

Is rank Að Þ ¼ n?
yes

Are storage and time more important than
accuracy? yes

F04JGF

no

F04AMF

no

Is m > n?
yes

F04JAF or F04JGF

no

F04JDF

Note 1: also returns an estimate of the condition number and the forward error.

Note 2: also returns an estimate of the condition number, the forward error and the backward error. Requires

additional workspace.

Note 3: for a single right-hand side only.

5 Index

Black Box routines, Ax ¼ b
Complex general band matrix ....................................................................................................... F04CBF
Complex general matrix ................................................................................................................ F04CAF
Complex general tridiagonal matrix ............................................................................................. F04CCF
Complex Hermitian matrix

Packed matrix format .............................................................................................................. F04CJF
Standard matrix format ............................................................................................................ F04CHF

Complex Hermitian positive-definite band matrix ....................................................................... F04CFF
Complex Hermitian positive-definite matrix

Packed matrix format .............................................................................................................. F04CEF
Standard matrix format ............................................................................................................ F04CDF

Complex Hermitian positive-definite tridiagonal matrix .............................................................. F04CGF
Complex symmetric matrix

Packed matrix format .............................................................................................................. F04DJF
Standard matrix format ............................................................................................................ F04DHF

Real general band matrix .............................................................................................................. F04BBF
Real general matrix

Multiple right-hand sides
Iterative refinement using additional precision .................................................................. F04AEF
Standard precision ............................................................................................................... F04BAF

Single right-hand side
Iterative refinement using additional precision .................................................................. F04ATF

Real general tridiagonal matrix ..................................................................................................... F04BCF
Real symmetric matrix

Packed matrix format .............................................................................................................. F04BJF
Standard matrix format ............................................................................................................ F04BHF

Real symmetric positive-definite band matrix .............................................................................. F04BFF
Real symmetric positive-definite matrix

Multiple right-hand sides
Iterative refinement using additional precision .................................................................. F04ABF
Standard precision ............................................................................................................... F04BDF
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Packed matrix format .............................................................................................................. F04BEF
Single right-hand side

Iterative refinement using additional precision .................................................................. F04ASF
Real symmetric positive-definite Toeplitz matrix

General right-hand side ........................................................................................................... F04FFF
Yule–Walker equations ............................................................................................................ F04FEF

Real symmetric positive-definite tridiagonal matrix .................................................................... F04BGF
General Purpose routines, Ax ¼ b,

real almost block-diagonal matrix ................................................................................................. F04LHF
real band symmetric positive-definite matrix, variable bandwidth ............................................. F04MCF
real matrix ...................................................................................................................................... F04AJF
real matrix, Iterative refinement .................................................................................................... F04AHF
real sparse matrix,

direct method ........................................................................................................................... F04AXF
iterative method ........................................................................................................................ F04QAF

real symmetric positive-definite matrix ......................................................................................... F04AGF
real symmetric positive-definite matrix, Iterative refinement ...................................................... F04AFF
real symmetric positive-definite Toeplitz matrix,

general right-hand side, Update solution ................................................................................ F04MFF
Yule–Walker equations, Update solution ................................................................................ F04MEF

real tridiagonal matrix ................................................................................................................... F04LEF
Least-squares and Homogeneous Equations,

real m by n matrix,
m � n, Rank ¼ n or minimal solution ................................................................................. F04JGF
rank ¼ n, Iterative refinement ................................................................................................ F04AMF

real sparse matrix ........................................................................................................................... F04QAF
Service Routines,

complex matrix,
norm and condition number estimation .................................................................................. F04ZCF

real matrix,
covariance matrix for linear least-squares problems .............................................................. F04YAF
norm and condition number estimation .................................................................................. F04YCF

6 Routines Withdrawn or Scheduled for Withdrawal

Withdrawn
Routine

Mark of
Withdrawal

Replacement Routine(s)

F04AAF 23 F07AAF (DGESV)
F04ACF 23 F07HAF (DPBSV)
F04ADF 23 F07ANF (ZGESV)
F04AKF 17 F07ASF (ZGETRS)
F04ALF 17 F07HEF (DPBTRS)
F04ANF 18 F08AGF (DORMQR), F06PJF (DTRSV) and F06EFF (DCOPY)
F04APF 8 F04AXF
F04AQF 16 F07GEF (DPPTRS) and F07PEF (DSPTRS)
F04ARF 23 F07AAF (DGESV)
F04AUF 9 F04JGF
F04AVF 9 F07BEF (DGBTRS)
F04AWF 17 F07FSF (ZPOTRS)
F04AYF 18 F07AEF (DGETRS)
F04AZF 17 F07FEF (DPOTRS)
F04EAF 23 F07CAF (DGTSV)
F04FAF 23 F07JAF (DPTSV)
F04JAF 23 F08KAF (DGELSS)
F04JDF 23 F08KAF (DGELSS)
F04JLF 23 F08ZBF (DGGGLM)
F04JMF 23 F08ZAF (DGGLSE)
F04KLF 23 F08ZPF (ZGGGLM)
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F04KMF 23 F08ZNF (ZGGLSE)
F04LDF 18 F07BEF (DGBTRS)
F04MAF 19 F11JCF
F04MBF 19 F11GDF, F11GEF, F11GFF, F11JCF or F11JEF
F04NAF 17 F07BSF (ZGBTRS) and F06SKF (ZTBSV)
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