
NAG Fortran Library Routine Document

F02SDF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F02SDF finds the eigenvector corresponding to a given real eigenvalue for the generalized problem
Ax ¼ �Bx, or for the standard problem Ax ¼ �x, where A and B are real band matrices.

2 Specification

SUBROUTINE F02SDF(N, MA1, MB1, A, IA, B, IB, SYM, RELEP, RMU, VEC, D,
1 IWORK, WORK, LWORK, IFAIL)

INTEGER N, MA1, MB1, IA, IB, IWORK(N), LWORK, IFAIL
real A(IA,N), B(IB,N), RELEP, RMU, VEC(N), D(30),

1 WORK(LWORK)
LOGICAL SYM

3 Description

Given an approximation � to a real eigenvalue � of the generalized eigenproblem Ax ¼ �Bx, this routine
attempts to compute the corresponding eigenvector by inverse iteration.

The routine first computes lower and upper triangular factors, L and U , of A� �B, using Gaussian

elimination with interchanges, and then solves the equation Ux ¼ e, where e ¼ ð1; 1; 1; . . . ; 1ÞT – this is
the first half iteration.

There are then three possible courses of action depending on the input value of D(1).

1. Dð1Þ ¼ 0.

This setting should be used if � is an ill-conditioned eigenvalue (provided the matrix elements do not
vary widely in order of magnitude). In this case it is essential to accept only a vector found after one
half iteration, and � must be a very good approximation to �. If acceptable growth is achieved in the
solution of Ux ¼ e, then the normalised x is accepted as the eigenvector. If not, columns of an
orthogonal matrix are tried in turn in place of e. If none of these give acceptable growth, the routine
fails, indicating that � was not a sufficiently good approximation to �.

2. Dð1Þ > 0.

This setting should be used if � is moderately close to an eigenvalue which is not ill-conditioned
(provided the matrix elements do not differ widely in order of magnitude). If acceptable growth is
achieved in the solution of Ux ¼ e, the normalised x is accepted as the eigenvector. If not, inverse
iteration is performed. Up to 30 iterations are allowed to achieve a vector and a correction to � which
together give acceptably small residuals.

3. Dð1Þ < 0.

This setting should be used if the elements of A and B vary widely in order of magnitude. Inverse
iteration is performed, but a different convergence criterion is used.

See Section 8.3 for further details.

Note that the bandwidth of the matrix A must not be less than the bandwidth of B. If this is not so, either
A must be filled out with zeros, or matrices A and B may be reversed and 1=� supplied as an
approximation to the eigenvalue 1=�. Also it is assumed that A and B each have the same number of sub-
diagonals as super-diagonals. If this is not so, they must be filled out with zeros. If A and B are both
symmetric, only the upper triangles need be supplied.
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5 Parameters

1: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 1.

2: MA1 – INTEGER Input

On entry: the value mA þ 1, where mA is the number of non-zero lines on each side of the diagonal
of A. Thus the total bandwidth of A is 2mA þ 1.

Constraint: 1 � MA1 � N.

3: MB1 – INTEGER Input

On entry: if MB1 � 0, then B is assumed to be the unit matrix. Otherwise MB1 must specify the
value mB þ 1, where mB is the number of non-zero lines on each side of the diagonal of B. Thus
the total bandwidth of B is 2mB þ 1.

Constraint: MB1 � MA1.

4: A(IA,N) – real array Input/Output

On entry: the n by n band matrix A. The mA sub-diagonals must be stored in the first mA rows of
the array; the diagonal in the (mA þ 1)th row; and the mA super-diagonals in rows mA þ 2 to
2mA þ 1. Each row of the matrix must be stored in the corresponding column of the array. For
example, if n ¼ 6 and mA ¼ 2 the storage scheme is:

� � a31 a42 a53 a64
� a21 a32 a43 a54 a65
a11 a22 a33 a44 a55 a66
a12 a23 a34 a45 a56 �
a13 a24 a35 a46 � �

:

Elements of the array marked � need not be set. The following code assigns the matrix elements
within the band to the correct elements of the array:

DO 20 J = 1, N
DO 10 I = MAX(1,J-MA1+1), MIN(N,J+MA1-1)

A(I-J+MA1,J) = matrix(J,I)
10 CONTINUE
20 CONTINUE

If SYM ¼ :TRUE: (see below) (i.e., both A and B are symmetric), only the lower triangle of A
need be stored in the first MA1 rows of the array.

On exit: details of the factorization of A� ���B, where ��� is an estimate of the eigenvalue.
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5: IA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02SDF is
called.

Constraint: IA � 2�MA1� 1.

6: B(IB,N) – real array Input/Output

On entry: if MB1 > 0, then B must contain the n by n band matrix B, stored in the same way as A.
If SYM ¼ :TRUE:, then only the lower triangle of B need be stored in the first MB1 rows of the
array. If MB1 � 0, the array is not used.

On exit: elements in the top-left corner, and in the bottom right corner if SYM ¼ :FALSE:, are set
to zero; otherwise the array is unchanged.

7: IB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F02SDF is
called.

Constraints:

if SYM ¼ :FALSE:, IB � 2�MB1� 1,
if SYM ¼ :TRUE:, IB � MB1.

8: SYM – LOGICAL Input

On entry: if SYM ¼ :TRUE:, then both A and B are assumed to be symmetric and only their upper
triangles need be stored. Otherwise SYM must be set to .FALSE..

9: RELEP – real Input

On entry: the relative error of the coefficients of the given matrices A and B. If the value of
RELEP is less than the machine precision, the machine precision is used instead.

10: RMU – real Input

On entry: �, an approximation to the eigenvalue for which the corresponding eigenvector is
required.

11: VEC(N) – real array Output

On exit: the eigenvector, normalised so that the largest element is unity, corresponding to the
improved eigenvalue RMUþ Dð30Þ.

12: D(30) – real array Input/Output

On entry: D(1) must be set to indicate the type of problem (see Section 3):

Dð1Þ > 0:0

Indicates a well-conditioned eigenvalue.

Dð1Þ ¼ 0:0

Indicates an ill-conditioned eigenvalue.

Dð1Þ < 0:0

Indicates that the matrices have elements varying widely in order of magnitude.

On exit: if Dð1Þ 6¼ 0:0 on entry, the successive corrections to � are given in DðiÞ, for i ¼ 1; 2; . . . ; k,
where kþ 1 is the total number of iterations performed. The final correction is also given in the last
position, D(30), of the array. The remaining elements of D are set to zero. If Dð1Þ ¼ 0:0 on entry,
no corrections to � are computed and DðiÞ is set to 0.0, for i ¼ 1; 2; . . . ; 30. Thus in all 3 cases the
best available approximation to the eigenvalue is RMUþ Dð30Þ.
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13: IWORK(N) – INTEGER array Workspace
14: WORK(LWORK) – real array Workspace
15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F02SDF is
called.

Constraints:

if Dð1Þ 6¼ 0:0, on entry, LWORK � N� ðMA1þ 1Þ,
if Dð1Þ ¼ 0:0, on entry, LWORK � 2� N.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or MA1 < 1,
or MA1 > N,
or IA < 2�MA1� 1,
or IB < MB1 when SYM ¼ :TRUE:,
or IB < 2�MB1� 1 when SYM ¼ :FALSE: (IB is not checked if MB1 � 0).

IFAIL ¼ 2

On entry, MA1 < MB1. Either fill out A with zeros, or reverse the roles of A and B, and replace

RMU by its reciprocal, i.e., solve Bx ¼ ��1Ax:

IFAIL ¼ 3

On entry, LWORK < 2� N when Dð1Þ ¼ 0:0,
or LWORK < N� (MA1þ 1) when Dð1Þ 6¼ 0:0.

IFAIL ¼ 4

A is null. If B is non-singular, all the eigenvalues are zero and any set of N orthogonal vectors
forms the eigensolution.

IFAIL ¼ 5

B is null. If A is non-singular, all the eigenvalues are infinite, and the columns of the unit matrix
are eigenvectors.

IFAIL ¼ 6

On entry, A and B are both null. The eigensolution is arbitrary.
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IFAIL ¼ 7

Dð1Þ 6¼ 0:0 on entry and convergence is not achieved in 30 iterations. Either the eigenvalue is ill-
conditioned or RMU is a poor approximation to the eigenvalue. See Section 8.3.

IFAIL ¼ 8

Dð1Þ ¼ 0:0 on entry and no eigenvector has been found after minðN; 5Þ back-substitutions. RMU is
not a sufficiently good approximation to the eigenvalue.

IFAIL ¼ 9

Dð1Þ < 0:0 on entry and RMU is too inaccurate for the solution to converge.

7 Accuracy

The eigensolution is exact for some problem

ðAþ EÞx ¼ �ðBþ F Þx;
where kEk; kFk are of the order of �ðkAk þ �kBkÞ, where � is the value used for RELEP.

8 Further Comments

8.1 Timing

The time taken by the routine is approximately proportional to nð2mA þ 1Þ2 for factorization, and to
nð2mA þ 1Þ for each iteration.

8.2 Storage

The storage of the matrices A and B is designed for efficiency on a paged machine.

This routine will work with full matrices but it will do so inefficiently, particularly in respect of storage
requirements.

8.3 Algorithmic Details

Inverse iteration is performed according to the rule

ðA� �BÞyrþ1 ¼ Bxr

xrþ1 ¼
1

�rþ1

yrþ1

where �rþ1 is the element of yrþ1 of largest magnitude.

Thus:

ðA� �BÞxrþ1 ¼
1

�rþ1

Bxr:

Hence the residual corresponding to xrþ1 is very small if j�rþ1j is very large (see Peters and Wilkinson

(1979)). The first half iteration, Uy1 ¼ e, corresponds to taking L�1PBx0 ¼ e.

If � is a very accurate eigenvalue, then there should always be an initial vector x0 such that one half
iteration gives a small residual and thus a good eigenvector. If the eigenvalue is ill-conditioned, then
second and subsequent iterated vectors may not be even remotely close to an eigenvector of a
neighbouring problem (see pages 374–376 of Wilkinson (1972) and Wilkinson (1974)). In this case it is
essential to accept only a vector obtained after one half iteration.

However, for well-conditioned eigenvalues, there is no loss in performing more than one iteration (see
page 376 of Wilkinson (1972)), and indeed it will be necessary to iterate if � is not such a good
approximation to the eigenvalue. When the iteration has converged, yrþ1 will be some multiple of xr,
yrþ1 ¼ �rþ1xr, say.
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Therefore

ðA� �BÞ�rþ1xr ¼ Bxr;

giving

A� �þ 1

�rþ1

� �
B

� �
xr ¼ 0:

Thus �þ 1

�rþ1

is a better approximation to the eigenvalue. �rþ1 is obtained as the element of yrþ1 which

corresponds to the element of largest magnitude, þ1, in xr. The routine terminates when

A� �þ 1

�r

� �
B

� �
xr

����
���� is of the order of the machine precision relative to kAk þ j�jkBk.

If the elements of A and B vary widely in order of magnitude, then kAk and kBk are excessively large
and a different convergence test is required. The routine terminates when the difference between
successive corrections to � is small relative to �.

In practice one does not necessarily know if the given problem is well-conditioned or ill-conditioned. In
order to provide some information on the condition of the eigenvalue or the accuracy of � in the event of

failure, successive values of
1

�r

are stored in the vector D when D(1) is non-zero on input. If these values

appear to be converging steadily, then it is likely that � was a poor approximation to the eigenvalue and it
is worth trying again with RMUþ Dð30Þ as the initial approximation. If the values in D vary considerably
in magnitude, then the eigenvalue is ill-conditioned.

A discussion of the significance of the singularity of A and/or B is given in relation to the QZ algorithm
in Wilkinson (1979).

9 Example

Given the generalized eigenproblem Ax ¼ �Bx where

A ¼

1 1 2

�1 2 1 2

�1 3 1 2

�1 4 1

�1 5

0
BBBB@

1
CCCCA and B ¼

5 1

1 4 2

2 3 2

2 2 1

1 1

0
BBBB@

1
CCCCA

find the eigenvector corresponding to the approximate eigenvalue �12:33.

Although B is symmetric, A is not, so SYM must be set to .FALSE. and all the elements of B in the band
must be supplied to the routine. A (as written above) has 1 sub-diagonal and 2 super-diagonals, so MA1
must be set to 3 and A filled out with an additional sub-diagonal of zeros. Each row of the matrices is
read in as data in turn.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* F02SDF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NMAX, MAMAX, MBMAX, IA, IB, LWORK
PARAMETER (NMAX=10,MAMAX=5,MBMAX=5,IA=2*MAMAX+1,

+ IB=2*MBMAX+1,LWORK=NMAX*(MAMAX+2))
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real RMU
INTEGER I, IFAIL, J, K, K1, K2, MA, MB, N

* .. Local Arrays ..
real A(IA,NMAX), B(IB,NMAX), D(30), WORK(LWORK),
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+ X(NMAX)
INTEGER IWORK(NMAX)

* .. External Subroutines ..
EXTERNAL F02SDF

* .. Intrinsic Functions ..
INTRINSIC MIN

* .. Executable Statements ..
WRITE (NOUT,*) ’F02SDF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, MA, MB
IF (N.GT.0 .AND. N.LE.NMAX .AND. MA.GE.0 .AND. MA.LE.MAMAX .AND.

+ MB.LE.MBMAX) THEN
DO 20 I = 1, N

K1 = MA + 1 - MIN(MA,I-1)
K2 = MA + 1 + MIN(MA,N-I)
READ (NIN,*) (A(K,I),K=K1,K2)

20 CONTINUE
DO 40 I = 1, N

K1 = MB + 1 - MIN(MB,I-1)
K2 = MB + 1 + MIN(MB,N-I)
READ (NIN,*) (B(K,I),K=K1,K2)

40 CONTINUE
READ (NIN,*) RMU, D(1)
IFAIL = 1

*
CALL F02SDF(N,MA+1,MB+1,A,IA,B,IB,.FALSE.,0.0e0,RMU,X,D,IWORK,

+ WORK,LWORK,IFAIL)
*

WRITE (NOUT,*)
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99999) ’Error in F02SDF. IFAIL =’, IFAIL
IF (IFAIL.EQ.7 .OR. IFAIL.EQ.9) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Successive corrections to RMU were’
WRITE (NOUT,*)
DO 60 J = 1, 29

IF (D(J).EQ.0.0e0) STOP
WRITE (NOUT,99996) D(J)

60 CONTINUE
END IF

ELSE
WRITE (NOUT,99998) ’Corrected eigenvalue = ’, RMU + D(30)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Eigenvector is’
WRITE (NOUT,99997) (X(I),I=1,N)

END IF
END IF
STOP

*
99999 FORMAT (1X,A,I2)
99998 FORMAT (1X,A,F8.4)
99997 FORMAT (1X,5F9.4)
99996 FORMAT (1X,e20.4)

END
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9.2 Program Data

F02SDF Example Program Data
5 2 1
1.0 1.0 2.0

-1.0 2.0 1.0 2.0
0.0 -1.0 3.0 1.0 2.0
0.0 -1.0 4.0 1.0
0.0 -1.0 5.0
5.0 1.0
1.0 4.0 2.0
2.0 3.0 2.0
2.0 2.0 1.0
1.0 1.0

-12.33 1.0

9.3 Program Results

F02SDF Example Program Results

Corrected eigenvalue = -12.3394

Eigenvector is
-0.0572 0.3951 -0.8427 1.0000 -0.6540
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