
NAG Fortran Library Routine Document

F01LEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F01LEF computes an LU factorization of a real tridiagonal matrix, using Gaussian elimination with partial
pivoting.

2 Specification

SUBROUTINE F01LEF(N, A, LAMBDA, B, C, TOL, D, IN, IFAIL)

INTEGER N, IN(N), IFAIL
real A(N), LAMBDA, B(N), C(N), TOL, D(N)

3 Description

The matrix T � �I, where T is a real n by n tridiagonal matrix, is factorized as

T � �I ¼ PLU;

where P is a permutation matrix, L is a unit lower triangular matrix with at most one non-zero sub-
diagonal element per column, and U is an upper triangular matrix with at most two non-zero super-
diagonal elements per column.

The factorization is obtained by Gaussian elimination with partial pivoting and implicit row scaling.

An indication of whether or not the matrix T � �I is nearly singular is returned in the nth element of the
array IN. If it is important that T � �I is non-singular, as is usually the case when solving a system of
tridiagonal equations, then it is strongly recommended that INðnÞ is inspected on return from F01LEF.
(See the parameter IN and Section 8 for further details.)

The parameter � is included in the routine so that F01LEF may be used, in conjunction with F04LEF, to
obtain eigenvectors of T by inverse iteration.

4 References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer-
Verlag

5 Parameters

1: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 1.

2: A(N) – real array Input/Output

On entry: the diagonal elements of T .

On exit: the diagonal elements of the upper triangular matrix U .

3: LAMBDA – real Input

On entry: the scalar �. The routine factorizes T � �I.

F01 – Matrix Factorizations F01LEF

[NP3546/20A] F01LEF.1



4: B(N) – real array Input/Output

On entry: the super-diagonal elements of T , stored in B(2) to BðnÞ; B(1) is not used.

On exit: the elements of the first super-diagonal of U , stored in B(2) to BðnÞ.

5: C(N) – real array Input/Output

On entry: the sub-diagonal elements of T , stored in C(2) to CðnÞ; C(1) is not used.

On exit: the sub-diagonal elements of L, stored in C(2) to CðnÞ.

6: TOL – real Input

On entry: a relative tolerance used to indicate whether or not the matrix (T � �I) is nearly singular.
TOL should normally be chosen as approximately the largest relative error in the elements of T .
For example, if the elements of T are correct to about 4 significant figures, then TOL should be set

to about 5� 10�4. See Section 8 for further details on how TOL is used. If TOL is supplied as
less than �, where � is the machine precision, then the value � is used in place of TOL.

7: D(N) – real array Output

On exit: the elements of the second super-diagonal of U , stored in D(3) to DðnÞ; D(1) and D(2) are
not used.

8: IN(N) – INTEGER array Output

On exit: details of the permutation matrix P . If an interchange occurred at the kth step of the
elimination, then INðkÞ = 1, otherwise INðkÞ = 0. If a diagonal element of U is small, indicating
that ðT � �IÞ is nearly singular, then the element INðnÞ is returned as positive. Otherwise INðnÞ is
returned as 0. See Section 8 for further details. If the application is such that it is important that
ðT � �IÞ is not nearly singular, then it is strongly recommended that INðnÞ is inspected on return.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

7 Accuracy

The computed factorization will satisfy the equation

PLU ¼ ðT � �IÞ þ E;

F01LEF NAG Fortran Library Manual

F01LEF.2 [NP3546/20A]



where

kEk1 � 9�max
i�j

ðjlijj; jlijj2Þ�kT � �Ik1

where � is the machine precision.

8 Further Comments

The time taken by the routine is approximately proportional to n.

The factorization of a tridiagonal matrix proceeds in ðn� 1Þ steps, each step eliminating one sub-diagonal
element of the tridiagonal matrix. In order to avoid small pivot elements and to prevent growth in the size
of the elements of L, rows k and (kþ 1) will, if necessary, be interchanged at the kth step prior to the
elimination.

The element INðnÞ returns the smallest integer, j, for which

jujjj � kðT � �IÞjk1 � TOL;

where kðT � �IÞjk1 denotes the sum of the absolute values of the jth row of the matrix (T � �I). If no

such j exists, then INðnÞ is returned as zero. If such a j exists, then jujjj is small and hence (T � �I) is
singular or nearly singular.

This routine may be followed by F04LEF to solve systems of tridiagonal equations. Users wishing to
solve single systems of tridiagonal equations may wish to be aware of F04EAF, which solves tridiagonal
systems with a single call. F04EAF requires less storage and will generally be faster than the combination
of F01LEF and F04LEF, but no test for near singularity is included in F04EAF and so it should only be
used when the equations are known to be non-singular.

9 Example

To factorize the tridiagonal matrix T where

T ¼

3:0 2:1 0 0 0

3:4 2:3 �1:0 0 0

0 3:6 �5:0 1:9 0

0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0
BBBB@

1
CCCCA

and then to solve the equations Tx ¼ y, where

y ¼

2:7
�0:5
2:6
0:6
2:7

0
BBBB@

1
CCCCA

by a call to F04LEF. The example program sets TOL ¼ 5� 10�5 and, of course, sets LAMBDA=0.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* F01LEF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NMAX
PARAMETER (NMAX=50)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real LAMBDA, TOL
INTEGER I, IFAIL, JOB, N

F01 – Matrix Factorizations F01LEF

[NP3546/20A] F01LEF.3



* .. Local Arrays ..
real A(NMAX), B(NMAX), C(NMAX), D(NMAX), Y(NMAX)
INTEGER IN(NMAX)

* .. External Subroutines ..
EXTERNAL F01LEF, F04LEF

* .. Executable Statements ..
WRITE (NOUT,*) ’F01LEF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N
WRITE (NOUT,*)
IF (N.LT.1 .OR. N.GT.NMAX) THEN

WRITE (NOUT,99999) ’N is out of range. N = ’, N
ELSE

READ (NIN,*) (A(I),I=1,N)
READ (NIN,*) (B(I),I=2,N)
READ (NIN,*) (C(I),I=2,N)
TOL = 0.00005e0
LAMBDA = 0.0e0
IFAIL = 1

*
CALL F01LEF(N,A,LAMBDA,B,C,TOL,D,IN,IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99999) ’F01LEF fails. IFAIL =’, IFAIL
ELSE

IF (IN(N).NE.0) THEN
WRITE (NOUT,*) ’Matrix is singular or nearly singular’
WRITE (NOUT,99998) ’Diagonal element’, IN(N), ’is small’

ELSE
WRITE (NOUT,*) ’Details of factorization’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Main diagonal of U’
WRITE (NOUT,99997) (A(I),I=1,N)
WRITE (NOUT,*)
WRITE (NOUT,*) ’ First super-diagonal of U’
WRITE (NOUT,99997) (B(I),I=2,N)
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Second super-diagonal of U’
WRITE (NOUT,99997) (D(I),I=3,N)
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Multipliers’
WRITE (NOUT,99997) (C(I),I=2,N)
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Vector of interchanges’
WRITE (NOUT,99996) (IN(I-1),I=2,N)

*
READ (NIN,*) (Y(I),I=1,N)
JOB = 1
IFAIL = 1

*
CALL F04LEF(JOB,N,A,B,C,D,IN,Y,TOL,IFAIL)

*
WRITE (NOUT,*)
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99999) ’F04LEF fails. IFAIL =’, IFAIL
ELSE

WRITE (NOUT,*) ’ Solution vector’
WRITE (NOUT,99997) (Y(I),I=1,N)

END IF
END IF

END IF
END IF
STOP

*
99999 FORMAT (1X,A,I5)
99998 FORMAT (1X,A,I4,A)
99997 FORMAT (1X,8F9.4)
99996 FORMAT (1X,5I9)

END

F01LEF NAG Fortran Library Manual

F01LEF.4 [NP3546/20A]



9.2 Program Data

F01LEF Example Program Data
5

3.0 2.3 -5.0 -0.9 7.1
2.1 -1.0 1.9 8.0
3.4 3.6 7.0 -6.0
2.7 -0.5 2.6 0.6 2.7

9.3 Program Results

F01LEF Example Program Results

Details of factorization

Main diagonal of U
3.0000 3.6000 7.0000 -6.0000 1.1508

First super-diagonal of U
2.1000 -5.0000 -0.9000 7.1000

Second super-diagonal of U
0.0000 1.9000 8.0000

Multipliers
1.1333 -0.0222 -0.1587 0.0168

Vector of interchanges
0 1 1 1

Solution vector
-4.0000 7.0000 3.0000 -4.0000 -3.0000

F01 – Matrix Factorizations F01LEF

[NP3546/20A] F01LEF.5 (last)


	F01LEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	A
	LAMBDA
	B
	C
	TOL
	D
	IN
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



