
NAG Fortran Library Routine Document

E04VHF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the details of

the algorithm. If you wish to use default settings for all of the optional parameters, you need only read

Sections 1 to 9 of this document. Refer to the additional Sections 10, 11 and 12 for a detailed description of the

algorithm, the specification of the optional parameters and a description of the monitoring information

produced by the routine.

1 Purpose

E04VHF solves sparse nonlinear programming problems.

2 Specification

SUBROUTINE E04VHF (START, NF, N, NXNAME, NFNAME, OBJADD, OBJROW, PROB,
1 USRFUN, IAFUN, JAVAR, A, LENA, NEA, IGFUN, JGVAR,
2 LENG, NEG, XLOW, XUPP, XNAMES, FLOW, FUPP, FNAMES, X,
3 XSTATE, XMUL, F, FSTATE, FMUL, NS, NINF, SINF, CW,
4 LENCW, IW, LENIW, RW, LENRW, CUSER, IUSER, RUSER,
5 IFAIL)

INTEGER START, NF, N, NXNAME, NFNAME, OBJROW, IAFUN(LENA),
1 JAVAR(LENA), LENA, NEA, IGFUN(LENG), JGVAR(LENG),
2 LENG, NEG, XSTATE(N), FSTATE(NF), NS, NINF, LENCW,
3 IW(LENIW), LENIW, LENRW, IUSER(*), IFAIL

double precision OBJADD, A(LENA), XLOW(N), XUPP(N), FLOW(NF),
1 FUPP(NF), X(N), XMUL(N), F(NF), FMUL(N), SINF,
2 RW(LENRW), RUSER(*)
CHARACTER*8 PROB, XNAMES(NXNAME), FNAMES(NFNAME), CW(LENCW),

1 CUSER(*)
EXTERNAL USRFUN

Before calling E04VHF, or one of the option setting routines E04VKF, E04VLF, E04VMF or E04VNF,
routine E04VGF must be called. The specification for E04VGF is:

SUBROUTINE E04VGF (CW, LENCW, IW, LENIW, RW, LENRW, IFAIL)

INTEGER LENCW, IW(LENIW), LENIW, LENRW, IFAIL

double precision RW(LENRW)
CHARACTER*8 CW(LENCW)

E04VGF should be called with LENCW, LENIW and LENRW, the declared lengths of CW, IW and RW
respectively, must satisfy:

LENCW � 600

LENIW � 600

LENRW � 600

The contents of the arrays CW, IW and RW must not be altered between calling routines E04VGF,
E04VHF, E04VJF, E04VKF, E04VLF, E04VMF and E04VNF.

3 Description

E04VHF is designed to minimize a linear or nonlinear function subject to bounds on the variables and
sparse linear or nonlinear constraints. It is suitable for large-scale linear and quadratic programming and
for linearly constrained optimization, as well as for general nonlinear programs of the form

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.1

minimize
x

f0 xð Þ subject to l �
x

f xð Þ
ALx

0
@

1
A � u, ð1Þ

where l and u are constant lower and upper bounds, f0 xð Þ is a smooth scalar objective function, AL is a
sparse matrix, and f xð Þ is a vector of smooth nonlinear constraint functions fi xð Þf g. An optional
parameter Maximize may specify that f0 xð Þf g should be maximimized instead of minimized.

Ideally, the first derivatives (gradients) of f0 xð Þ and fi xð Þ should be known and coded by the user. If only
some of the gradients are known, E04VHF will estimate the missing ones with finite differences.

If f0 xð Þ is linear and f xð Þ is absent, (1) is a linear program (LP) and E04VHF applies the primal simplex
method (see Dantzig (1963)). Sparse basis factors are maintained by LUSOL (see Gill et al. (1987)) as in
MINOS (see Murtagh and Saunders (1995)).

If only the objective is nonlinear, the problem is linearly constrained (LC) and tends to solve more easily
than the general case with nonlinear constraints (NC). For both cases E04VHF applies a sparse sequential
quadratic programming (SQP) method (see Gill et al. (2002)), using limited-memory quasi-Newton
approximations to the Hessian of the Lagrangian. The merit function for steplength control is an
augmented Lagrangian, as in the dense SQP solver E04WDF (see Gill et al. (1986c) and Gill et al.

(1992)).

It is suitable for nonlinear problems with thousands of constraints and variables, and is efficient if many
constraints and bounds are active at a solution. (Thus, ideally there should not be thousands of degrees of
freedom.)

E04VHF allows linear and nonlinear constraints and variables to be entered in an arbitrary order, and uses
one user-supplied routine to define all the nonlinear functions.

The optimization problem is assumed to be in the form

minimize
x

Fobj xð Þ subject to lx � x � ux, lF � F xð Þ � uF , ð2Þ

where the upper and lower bounds are constant, F xð Þ is a vector of smooth linear and nonlinear constraint
functions Fi xð Þf g, and Fobj xð Þ is one of the components of F to be minimized, as specified by the input

parameter OBJROW. (The option Maximize specifies that Fobj xð Þ should be maximized instead of

minimized.) E04VHF reorders the variables and constraints so that the problem is in the form (1).

Ideally, the first derivatives (gradients) of Fi should be known and coded by the user. If only some
gradients are known, E04VHF estimates the missing ones with finite differences.

Note that upper and lower bounds are specified for all variables and functions. This form allows full
generality in specifying various types of constraint. Special values are used to indicate absent bounds
(lj ¼ �1 or uj ¼ þ1 for appropriate j). Free variables and free constraints (‘free rows’) are ones that

have both bounds infinite. Fixed variables and equality constraints have lj ¼ uj.

In general, the components of F are structured in the sense that they are formed from sums of linear and
nonlinear functions of just some of the variables. This structure can be exploited by E04VHF.

In many cases, the vector F xð Þ is a sum of linear and nonlinear functions. E04VHF allows these terms to
be specified separately, so that the linear part is defined just once by the input arguments IAFUN, JAVAR,
and A. Only the nonlinear part is recomputed at each x.

Suppose that each component of F xð Þ is of the form

Fi xð Þ ¼ fi xð Þ þ
Xn
j¼1

Aijxj,

where fi xð Þ is a nonlinear function (possibly zero) and the elements Aij are constant. The nf by n

Jacobian of F xð Þ is the sum of two sparse matrices of the same size F 0 xð Þ ¼ G xð Þ þA, where

G xð Þ ¼ f 0 xð Þ and A is the matrix with elements Aij

� �
. The two matrices must be non-overlapping in the

sense that each element of the Jacobian F 0 xð Þ ¼ G xð Þ þA is an element of G xð Þ or an element of A, but
not both. The element cannot be split between G xð Þ and A.

E04VHF NAG Fortran Library Manual

E04VHF.2 [NP3657/21]

For example, the function

F xð Þ ¼
3x1 þ ex2x4 þ x22 þ 4x4 � x3 þ x5

x2 þ x2
3 þ sinx4 � 3x5

x1 � x3

0
@

1
A

can be written as

F xð Þ ¼ f xð Þ þAx ¼
ex2x4 þ x2

2 þ 4x4
x23 þ sinx4

0

0
@

1
Aþ

3x1 � x3 þ x5

x2 � 3x5

x1 � x3

0
@

1
A,

in which case

F 0 xð Þ ¼
3 ex2x4 þ 2x2 �1 ex2 þ 4 1

0 1 2x3 cosx4 �3

1 0 �1 0 0

0
@

1
A

can be written as F 0 xð Þ ¼ f 0 xð Þ þA ¼ G xð Þ þA, where

G xð Þ ¼
0 ex2x4 þ 2x2 0 ex2 þ 4 0

0 0 2x3 cosx4 0

0 0 0 0 0

0
@

1
A, A ¼

3 0 �1 0 1

0 1 0 0 �3

1 0 �1 0 0

0
@

1
A.

Note: that element ex2 þ 4 of F 0 xð Þ appears in G xð Þ and is not split between G xð Þ and A although it
contains a linear term.

The non-zero elements of A and G are provided to E04VHF in coordinate form. The elements of A are

entered as triples i; j; Aij

� �
in the arrays IAFUN, JAVAR, and A. The sparsity pattern G is entered as

pairs i; jð Þ in the arrays IGFUN and JGVAR. The corresponding entries Gij (any that are known) are

assigned to appropriate array elements G kð Þ in the user’s subroutine USRFUN.

The elements of A and G may be stored in any order. Duplicate entries are ignored. IGFUN and JGVAR
may be defined automatically by subroutine E04VJF when Derivative Option 0 is specified and USRFUN
does not provide any gradients.

Throughout this document the symbol � is used to represent the machine precision (see X02AJF).

E04VHF is based on SNOPTA, which is part of the SNOPT package described in Gill et al. (2004).

4 References

Dantzig G B (1963) Linear Programming and Extensions Princeton University Press

Eldersveld S K (1991) Large-scale sequential quadratic programming algorithms PhD Thesis Department
of Operations Research, Stanford University, Stanford

Fourer R (1982) Solving staircase linear programs by the simplex method Math. Programming 23 274–313

Gill P E, Murray W and Saunders M A (1999) Users’ guide for SQOPT 5.3: a Fortran package for large-
scale linear and quadratic programming Report SOL 99 Department of Operations Research, Stanford
University

Gill P E, Murray W and Saunders M A (2002) SNOPT: An SQP Algorithm for Large-scale Constrained

Optimization 12 979–1006 SIAM J. Optim.

Gill P E, Murray W and Saunders M A (2004) User’s Guide for SNOPT Version 7.1, A Fortran Package
for Large-Scale Nonlinear Programming Report NA 04-1 Department of Mathematics, University of
California, San Diego URL: ftp://www.scicomp.ucsd.edu/pub/peg/reports/snopt7.pdf

Gill P E, Murray W, Saunders M A and Wright M H (1986c) Users’ guide for NPSOL (Version 4.0): a
Fortran package for nonlinear programming Report SOL 86-2 Department of Operations Research,
Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1987) Maintaining LU factors of a general sparse
matrix Linear Algebra and its Applics. 88/89 239–270

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.3

Gill P E, Murray W, Saunders M A and Wright M H (1992) Some theoretical properties of an augmented
Lagrangian merit function Advances in Optimization and Parallel Computing (ed P M Pardalos) 101–128
North Holland

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in

Economics and Mathematical Systems 187 Springer–Verlag

Murtagh B A and Saunders M A (1978) Large-scale linearly constrained optimization 14 41–72 Math.
Program.

Murtagh B A and Saunders M A (1982) A projected Lagrangian algorithm and its implementation for
sparse nonlinear constraints Math. Program. Stud. 16 84–118

Murtagh B A and Saunders M A (1995) MINOS 5.4 Users’ Guide Report SOL 83-20R Department of
Operations Research, Stanford University

5 Parameters

Note: all optional parameters are described in detail in Section 11.2.

1: START – INTEGER Input

On entry: indicates how a starting basis (and certain other items) are to be obtained.

If START ¼ 0 (Cold Start), requests that the Crash procedure be used to choose an initial
basis, unless a basis file is provided via Old Basis File, Insert File or Load File;
if START ¼ 1, is the same as START ¼ 0 but is more meaningful when a basis file is given;
if START ¼ 2 (Warm Start), means that a basis is already defined in XSTATE and FSTATE
(probably from an earlier call).

Constraint: 0 � START � 2.

2: NF – INTEGER Input

On entry: nf , the number of problem functions in F xð Þ, including the objective function (if any)
and the linear and nonlinear constraints. Simple upper and lower bounds on x can be defined using
the parameters XLOW and XUPP defined below and should not be included in F .

Constraint: NF > 0.

3: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

4: NXNAME – INTEGER Input

On entry: the number of names provided in the array XNAMES.

If NXNAME ¼ 1, there are no names provided and generic names will be used in the output;
if NXNAME ¼ N, names for all variables must be provided and will be used in the output.

Constraint: NXNAME ¼ 1 or N.

5: NFNAME – INTEGER Input

On entry: the number of names provided in the array FNAMES.

If NFNAME ¼ 1, there are no names provided and generic names will be used in the output;
if NFNAME ¼ NF, names for all functions must be provided and will be used in the output.

Constraint: NFNAME ¼ 1 or NF.

6: OBJADD – double precision Input

On entry: is a constant that will be added to the objective row f0 OBJROWð Þ for printing purposes.
Typically, OBJADD ¼ 0:0Dþ 0.

E04VHF NAG Fortran Library Manual

E04VHF.4 [NP3657/21]

7: OBJROW – INTEGER Input

On entry: says which row of F is to act as the objective function. If there is no such vector,
OBJROW ¼ 0 and E04VHF will attempt to find a point such that lF � F xð Þ � uF and
lx � x � ux.

Constraint: 1 � OBJROW � NF or OBJROW ¼ 0 (or a feasible point problem).

8: PROB – CHARACTER*8 Input

On entry: is an 8-character name for the problem. PROB is used in the printed solution and in some
routines that output basis files. A blank name may be used.

9: USRFUN – SUBROUTINE, supplied by the user. External Procedure

USRFUN must define the nonlinear portion f xð Þ of the problem functions F xð Þ ¼ f xð Þ þAx,

along with its gradient elements Gij xð Þ ¼ @fi xð Þ
@xj

. This subroutine is passed to E04VHF as the

external parameter USRFUN. (A dummy subroutine is needed even if f xð Þ ¼ 0 and all functions
are linear.)

In general, USRFUN should return all function and gradient values on every entry except perhaps
the last. This provides maximum reliability and corresponds to the default setting, Derivative
Option 1.

The elements of G xð Þ are stored in the array G 1 : LENGð Þ in the order specified by the input arrays
IGFUN and JGVAR.

In practice it is often convenient not to code gradients. E04VHF is able to estimate them by finite

differences, using a call to USRFUN for each variable xj for which some
@fi xð Þ
@xj

needs to be

estimated. However, this reduces the reliability of the optimization algorithm, and it can be very
expensive if there are many such variables xj.

As a compromise, E04VHF allows you to code as many gradients as you like. This option is
implemented as follows. Just before the function routine is called, each element of the derivative
array G is initialized to a specific value. On exit, any element retaining that value must be estimated
by finite differences.

Some rules of thumb follow:

(i) for maximum reliability, compute all gradients;

(ii) if the gradients are expensive to compute, specify Nonderivative Linesearch and use the
value of the input parameter NEEDG to avoid computing them on certain entries. (There is
no need to compute gradients if NEEDG ¼ 0 on entry to USRFUN.);

(iii) if not all gradients are known, you must specify Derivative Option 0. You should still
compute as many gradients as you can. (It often happens that some of them are constant or
zero.);

(iv) again, if the known gradients are expensive, don’t compute them if NEEDG ¼ 0 on entry to
USRFUN;

(v) use the input parameter STATUS to test for special actions on the first or last entries.

(vi) while USRFUN is being developed, use the Verify Level option to check the computation of
gradients that are supposedly known.

(vii) USRFUN is not called until the linear constraints and bounds on x are satisfied. This helps
confine x to regions where the functions fi xð Þ are likely to be defined. However, be aware
of the Minor Feasibility Tolerance if the functions have singularities on the constraint
boundaries.

(viii) set STATUS ¼ �1 if some of the functions are undefined. The line search will shorten the
step and try again.

(ix) set STATUS � �2 if you want E04VHF to stop.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.5

Its specification is:

SUBROUTINE USRFUN (STATUS, N, X, NEEDF, NF, F, NEEDG, LENG, G,
1 CUSER, IUSER, RUSER)

INTEGER STATUS, N, NEEDF, NF, NEEDG, LENG, IUSER(*)

double precision X(N), F(NF), G(LENG), RUSER(*)
CHARACTER*8 CUSER(*)

1: STATUS – INTEGER Input/Output

On entry: indicates the first and last calls to USRFUN.

If STATUS ¼ 0, there is nothing special about the current call to USRFUN.

If STATUS ¼ 1, E04VHF is calling your subroutine for the first time. You may
wish to do something special such as read data from a file.

If STATUS � 2, E04VHF is calling your subroutine for the last time. You may
wish to perform some additional computation on the final solution.

In particular,

if STATUS ¼ 2, the current X is optimal;
if STATUS ¼ 3, the problem appears to be infeasible;
if STATUS ¼ 4, the problem appears to be unbounded;
if STATUS ¼ 5, an iterations limit was reached.

If the functions are expensive to evaluate, it may be desirable to do nothing on the last
call. The first executable statement could be

IF (STATUS .GE. 2) RETURN.

On exit: may be used to indicate that you are unable to evaluate f or its gradients at the
current x. (For example, the problem functions may not be defined there).

During the line search, f xð Þ is evaluated at points x ¼ xk þ �pk for various steplengths �,
where f xkð Þ has already been evaluated satisfactorily. For any such x, if you set
STATUS ¼ �1, E04VHF will reduce � and evaluate f again (closer to xk, where f xkð Þ
is more likely to be defined).

If for some reason you wish to terminate the current problem, set STATUS � �2.

2: N – INTEGER Input

On entry: n, the number of variables, as defined in the call to E04VHF.

3: XðNÞ – double precision array Input

On entry: the variables x at which the problem functions are to be calculated. The array x
must not be altered.

4: NEEDF – INTEGER Input

5: NF – INTEGER Input

6: FðNFÞ – double precision array Input/Output

On entry: concern the calculation of f xð Þ.
NF is the length of the full vector F xð Þ ¼ f xð Þ þAx as defined in the call to E04VHF.

NEEDF indicates if F must be assigned during this call of USRFUN:

if NEEDF¼0, F is not required and is ignored;
if NEEDF > 0, the components of f xð Þ corresponding to the nonlinear part of
F xð Þ must be calculated and assigned to F.

If Fi xð Þ is linear and completely defined by the ith row of A, A0
i, then the

associated value of f xð Þ is ignored and need not be assigned. However, if Fi xð Þ

E04VHF NAG Fortran Library Manual

E04VHF.6 [NP3657/21]

has a nonlinear portion fi xð Þ that happens to be zero at x, then it is still necessary

to set fi xð Þ ¼ 0. If the linear part A0
i of a nonlinear Fi xð Þ is provided using the

arrays IAFUN, JAVAR and A, then it must not be computed again as part of fi xð Þ.
To simplify the code, you may ignore the value of NEEDF and compute f xð Þ on every
entry to USRFUN.

NEEDF may also be ignored with Derivative Linesearch and Derivative Option 1. In
this case, NEEDF is always 1, and F must always be assigned.

On exit: F contains the computed functions f xð Þ (except perhaps if NEEDF ¼ 0).

7: NEEDG – INTEGER Input

8: LENG – INTEGER Input

9: GðLENGÞ – double precision array Input/Output

On entry: concern the calculations of the derivatives of the function f xð Þ. LENG is the
length of the coordinate arrays JGVAR and IGFUN in the call to E04VHF. NEEDG
indicates if G must be assigned during this call of USRFUN:

if NEEDG ¼ 0, G is not required and is ignored;
if NEEDG > 0, the partial derivatives of f xð Þ must be calculated and assigned to

G. For each k ¼ 1 : LENG, the value of G kð Þ should be
@fi xð Þ
@xj

, where

i ¼ IGFUN kð Þ, j ¼ JGVAR kð Þ.
On exit: G contains the computed derivatives G xð Þ (except perhaps if NEEDG ¼ 0).

These derivative elements must be stored in G in exactly the same positions as implied by
the definitions of arrays IGFUN and JGVAR. There is no internal check for consistency
(except indirectly via the Verify Level option), so great care is essential.

10: CUSERð�Þ – CHARACTER*8 array User Workspace

11: IUSERð�Þ – INTEGER array User Workspace

12: RUSERð�Þ – double precision array User Workspace

USRFUN is called from E04VHF with the parameters CUSER, IUSER and RUSER as
supplied to E04VHF. These parameters are not touched by E04VHF and can be used as
an alternative to COMMON.

USRFUN must be declared as EXTERNAL in the (sub)program from which E04VHF is called.
Parameters denoted as Input must not be changed by this procedure.

10: IAFUNðLENAÞ – INTEGER array Input

11: JAVARðLENAÞ – INTEGER array Input

12: AðLENAÞ – double precision array Input

On entry: define the coordinates i; jð Þ and values Aij of the non-zero elements of the linear part A
of the function f0 xð Þ ¼ f xð Þ þAx.

In particular, the NEA triples IAFUN kð Þ; JAVAR kð Þ;A kð Þð Þ define the row and column indices
i ¼ IAFUN kð Þ and j ¼ JAVAR kð Þ of the element Aij ¼ A kð Þ.

The coordinates may define the elements of A in any order.

13: LENA – INTEGER Input

On entry: the dimension of the arrays IAFUN, JAVAR and A that holds i; j; Aij

� �
as declared in the

(sub)program from which E04VHF is called.

Constraint: LENA � 1.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.7

14: NEA – INTEGER Input

On entry: is the number of non-zero entries in A such that F xð Þ ¼ f xð Þ þAx.

Constraint: 0 � NEA � LENA.

15: IGFUNðLENGÞ – INTEGER array Input

16: JGVARðLENGÞ – INTEGER array Input

On entry: define the coordinates i; jð Þ of the non-zero elements of G, the nonlinear part of the
derivatives J xð Þ ¼ G xð Þ þA of the function F xð Þ ¼ f xð Þ þAx. Routine E04VJF may be used to
define these two arrays.

The coordinates can define the elements of G in any order. However, subroutine USRFUN must
define the actual elements of G in exactly the same order as defined by the coordinates
IGFUN; JGVARð Þ.

17: LENG – INTEGER Input

On entry: the dimension of the arrays IGFUN and JGVAR that define the varying Jacobian elements

i; j;Gij

� �
as declared in the (sub)program from which E04VHF is called.

Constraint: LENG � 1.

18: NEG – INTEGER Input

On entry: the number of non-zero entries in G.

Constraint: 0 � NEG � LENG.

19: XLOWðNÞ – double precision array Input

20: XUPPðNÞ – double precision array Input

On entry: contain the lower and upper bounds lx and ux on the variables x.

To specify a non-existent lower bound lx½ �j ¼ �1, set XLOW jð Þ � �bigbnd, where bigbnd is the

Infinite Bound Size. To specify a non-existent upper bound XUPP jð Þ � bigbnd.

To fix the jth variable (say xj ¼ �, where �j j < bigbnd), set XLOW jð Þ ¼ XUPP jð Þ ¼ �.

21: XNAMESðNXNAMEÞ – CHARACTER*8 array Input

On entry: the optional names for the variables.

If NXNAME ¼ 1, XNAMES is not referenced and default names will be used for output;
if NXNAME ¼ N, XNAMES jð Þ should contain the 8-character name of the jth variable.

22: FLOWðNFÞ – double precision array Input

23: FUPPðNFÞ – double precision array Input

On entry: contain the lower and upper bounds lF and uF on F xð Þ.
To specify a non-existent lower bound lF½ �i ¼ �1, set FLOW ið Þ � �bigbnd. For a non-existent

upper bound uF½ �i ¼ 1, set FUPP ið Þ � bigbnd.

To make the ith constraint an equality constraint (say Fi ¼ �, where �j j < bigbnd), set
FLOW ið Þ ¼ FUPP ið Þ ¼ �.

24: FNAMESðNFNAMEÞ – CHARACTER*8 array Input

On entry: the optional names for the problem functions.

If NFNAME ¼ 1, FNAMES is not referenced and default names will be used for output;
if NFNAME ¼ NF, FNAMES ið Þ should contain the 8-character name of the ith row of F .

E04VHF NAG Fortran Library Manual

E04VHF.8 [NP3657/21]

25: XðNÞ – double precision array Input/Output

On entry: an initial estimate of the variables x. See the following description of XSTATE.

On exit: the final values of the variable x.

26: XSTATEðNÞ – INTEGER array Input/Output

On entry: the initial state for each variable x.

If START ¼ 0 or 1 and no basis information is provided (the optional parameters Old Basis
File, Insert File and Load File all set to 0; the default) X and XSTATE must be defined.

If nothing special is known about the problem, or if there is no wish to provide special
information, you may set X jð Þ ¼ 0:0, XSTATE jð Þ ¼ 0, for all j ¼ 1; . . . ;N. If you set
XðjÞ ¼ XLOWðjÞ set XSTATEðjÞ ¼ 4; if you set XðjÞ ¼ XUPPðjÞ then set
XSTATEðjÞ ¼ 5. In this case a crash procedure is used to select an initial basis.

If START ¼ 0 or 1 and basis information is provided (at least one of the optional parameters
Old Basis File, Insert File and Load File is non-zero) X and XSTATE need not be set.

If START ¼ 2 (warm start) X and XSTATE must be set (probably from a previous call). In
this case XSTATE jð Þ must be 0, 1, 2 or 3, for j ¼ 1; . . . ;N.

On exit: the final state of the variables. The elements of XSTATE have the following meaning:

XSTATE jð Þ State of variable j Usual value of X jð Þ

0 nonbasic XLOW jð Þ

1 nonbasic XUPP jð Þ

2 superbasic Between XLOW jð Þ and XUPP jð Þ

3 basic Between XLOW jð Þ and XUPP jð Þ

Basic and superbasic variables may be outside their bounds by as much as the Minor Feasibility
Tolerance. Note that if scaling is specified, the feasibility tolerance applies to the variables of the
scaled problem In this case, the variables of the original problem may be as much as 0.1 outside
their bounds, but this is unlikely unless the problem is very badly scaled. Check the value of
Primal infeasibility output to Print File.

Very occasionally some nonbasic variables may be outside their bounds by as much as the Minor
Feasibility Tolerance, and there may be some nonbasics for which X jð Þ lies strictly between its
bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if scaling was not used).

Constraint: 0 � XSTATE jð Þ � 5, for j ¼ 1; . . . ;N.

27: XMULðNÞ – double precision array Output

On exit: the vector of the dual variables (Lagrange multipliers) for the simple bounds lx � x � ux.

28: FðNFÞ – double precision array Input/Output

On entry: an initial value for the problem functions F . See the following description of FSTATE.

On exit: the final values for the problem functions F (the values F at the final point X).

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.9

29: FSTATEðNFÞ – INTEGER array Input/Output

On entry: the initial state for the problem functions F .

If START ¼ 0 or 1 and no basis information is provided (the optional parameters Old Basis
File, Insert File and Load File all set to 0; the default), F and FSTATE must be defined.

If nothing special is known about the problem, or if there is no wish to provide special
information, you may set F ið Þ ¼ 0:0, FSTATE ið Þ ¼ 0, for all i ¼ 1; . . . ;NF. Less trivially,
to say that the optimal value of function F ið Þ will probably be equal to one of its bounds, set
F ið Þ ¼ FLOW ið Þ and FSTATE ið Þ ¼ 4 or F ið Þ ¼ FUPP ið Þ and FSTATE ið Þ ¼ 5 as
appropriate. In this case a crash procedure is used to select an initial basis.

If START ¼ 0 or 1 and basis information is provided (at least one of the optional parameters
Old Basis File, Insert File and Load File is non-zero), F and FSTATE need not be set.

If START ¼ 2 (warm start), F and FSTATE must be set (probably from a previous call). In
this case FSTATE ið Þ must be 0, 1, 2 or 3, for i ¼ 1; . . . ;NF.

On exit: the final state of the variables. The elements of FSTATE have the following meaning:

FSTATE ið Þ State of the corresponding slack variable Usual value of F ið Þ

0 nonbasic FLOW ið Þ

1 nonbasic FUPP ið Þ

2 superbasic Between FLOW ið Þ and FUPP ið Þ

3 basic Between FLOW ið Þ and FUPP ið Þ

Basic and superbasic slack variables may lead to the corresponding functions being outside their
bounds by as much as the Minor Feasibility Tolerance.

Very occasionally some functions may be outside their bounds by as much as the Minor Feasibility
Tolerance, and there may be some nonbasics for which F ið Þ lies strictly between its bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if scaling was not used).

Constraint: 0 � FSTATE ið Þ � 5, for i ¼ 1; . . . ;NF.

30: FMULðNÞ – double precision array Input/Output

On entry: an estimate of �, the vector of Lagrange multipliers (shadow prices) for the constraints
lF � F xð Þ � uF . All NF components must be defined. If nothing is known about �, set
FMUL ið Þ ¼ 0:0, i ¼ 1 : NF. For warm start use the values from a previous call.

On exit: the vector of the dual variables (Lagrange multipliers) for the general constraints
lF � F xð Þ � uF

31: NS – INTEGER Input/Output

On entry: the number of superbasic variables. NS need not be specified for Cold starts, but should
retain its value from a previous call when warm start is used.

On exit: the final number of superbasic variables.

32: NINF – INTEGER Output

33: SINF – double precision Output

On exit: are the number and the sum of the infeasibilities of constraints that lie outside one of their
bounds by more than the Minor Feasibility Tolerance before the solution is unscaled.

If the linear constraints are infeasible X minimizes the sum of the infeasibilities of the linear
constraints subject to the upper and lower bounds being satisfied. In this case NINF gives the

E04VHF NAG Fortran Library Manual

E04VHF.10 [NP3657/21]

number of components of ALx lying outside their upper or lower bounds. The nonlinear constraints
are not evaluated.

Otherwise, X minimizes the sum of infeasibilities of the nonlinear constraints subject to the linear
constraints and upper and lower bounds being satisfied. In this case NINF gives the number of
components of F xð Þ lying outside their upper or lower bounds by more than the Minor Feasibility
Tolerance. Again this is before the solution is unscaled.

34: CWðLENCWÞ – CHARACTER*8 array Communication Array

35: LENCW – INTEGER Input

On entry: the dimension of the array CW as declared in the (sub)program from which E04VHF is
called.

Constraint: LENCW � 600.

36: IWðLENIWÞ – INTEGER array Communication Array

37: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04VHF is
called.

Constraint: LENIW � 600.

38: RWðLENRWÞ – double precision array Communication Array

39: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04VHF is
called.

Constraint: LENRW � 600.

40: CUSERð�Þ – CHARACTER*8 array User Workspace

41: IUSERð�Þ – INTEGER array User Workspace

42: RUSERð�Þ – double precision array User Workspace

Note: the dimension of the array CUSER, IUSER and RUSER must be at least 1.

CUSER, IUSER and RUSER are not used by E04VHF, but are passed directly to USRFUN and
may be used to communicate with E04VHF.

43: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On final exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04VHF returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies the first-
order Kuhn–Tucker (see Section 12.2) conditions to the accuracy requested by the optional
parameter Major Optimality Tolerance (see Section 11.2), i.e., the projected gradient and active
constraint residuals are negligible at x.

The user should check whether the following four conditions are satisfied:

(i) the final value of rgNorm (see Section 12.2) is significantly less than that at the starting point;

(ii) during the final major iterations, the values of Step and Minors (see Section 12.1) are both
one;

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.11

(iii) the last few values of both rgNorm and SumInf (see Section 12.2) become small at a fast linear
rate; and

(iv) CondHz (see Section 12.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

One caution about ‘Optimal solutions’. Some of the variables or slacks may lie outside their bounds
more than desired, especially if scaling was requested. Max Primal infeas refers to the largest
bound infeasibility and which variable is involved. If it is too large, consider restarting with a
smaller Minor Feasibility Tolerance (say 10 times smaller) and perhaps Scale Option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal value.
Broadly speaking, if

Max Dual infeas=Max pi ¼ 10�d,

then the objective function would probably change in the dth significant digit if optimization could
be continued. If d seems too large, consider restarting with a smaller Major Optimality Tolerance.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlinear rows. If it
seems too large, consider restarting with a smaller Major Feasibility Tolerance.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04VGF has not been called or at least one of LENCW, LENIW and
LENRW is less than 600.

IFAIL ¼ 2

An input parameter is invalid. The output message provides more details of the invalid argument.

IFAIL ¼ 3

Requested accuracy could not be achieved.

A feasible solution has been found, but the requested accuracy in the dual infeasibilities could not

be achieved. An abnormal termination has occurred, but E04VHF is within 10�2 of satisfying the
Major Optimality Tolerance. Check that the Major Optimality Tolerance is not too small.

IFAIL ¼ 4

The problem appears to be infeasible.

When the constraints are linear, this message can probably be trusted. Feasibility is measured with
respect to the upper and lower bounds on the variables and slacks. Among all the points satisfying
the general constraints Ax� s ¼ 0 (see (6) and (7) in Section 10.2), there is apparently no point
that satisfies the bounds on x and s. Violations as small as the Minor Feasibility Tolerance are
ignored, but at least one component of x or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even if a
feasible solution exists, the current linearization of the constraints may not contain a feasible point.
In an attempt to deal with this situation, when solving each QP subproblem, E04VHF is prepared to
relax the bounds on the slacks associated with nonlinear rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates for
the nonlinear constraints become large), E04VHF enters so-called ‘nonlinear elastic’ mode. The
subproblem includes the original QP objective and the sum of the infeasibilities – suitably weighted
using the Elastic Weight parameter. In elastic mode, some of the bounds on the nonlinear rows are

E04VHF NAG Fortran Library Manual

E04VHF.12 [NP3657/21]

‘elastic’ – i.e., they are allowed to violate their specific bounds. Variables subject to elastic bounds
are known as elastic variables. An elastic variable is free to violate one or both of its original upper
or lower bounds. If the original problem has a feasible solution and the elastic weight is sufficiently
large, a feasible point eventually will be obtained for the perturbed constraints, and optimization can
continue on the subproblem. If the nonlinear problem has no feasible solution, E04VHF will tend
to determine a ‘good’ infeasible point if the elastic weight is sufficiently large. (If the elastic weight
were infinite, E04VHF would locally minimize the nonlinear constraint violations subject to the
linear constraints and bounds.)

Unfortunately, even though E04VHF locally minimizes the nonlinear constraint violations, there
may still exist other regions in which the nonlinear constraints are satisfied. Wherever possible,
nonlinear constraints should be defined in such a way that feasible points are known to exist when
the constraints are linearized.

IFAIL ¼ 5

The problem appears to be unbounded (or badly scaled).

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can apparently be increased or decreased by an arbitrary amount without causing a basic variable to
violate a bound. A message will give the index of the nonbasic variable. Consider adding an upper
or lower bound to the variable. Also, examine the constraints that have non-zeros in the associated
column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous
indication of unboundedness. Consider using the Scale Option.

For nonlinear problems, E04VHF monitors both the size of the current objective function and the
size of the change in the variables at each step. If either of these is very large (as judged by the
unbounded parameters (see Section 12.1)), the problem is terminated and declared UNBOUNDED.
To avoid large function values, it may be necessary to impose bounds on some of the variables in
order to keep them away from singularities in the nonlinear functions.

The message may indicate an abnormal termination while enforcing the limit on the constraint
violations. This exit implies that the objective is not bounded below in the feasible region defined
by expanding the bounds by the value of the Violation Limit.

IFAIL ¼ 6

Iteration limit reached.

Either the Minor Iterations Limit or the Major Iterations Limit was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. If so,
restart the run using a basis file that was saved (or should have been saved) at the end of the run.

If none of the above limits have been reached, this error may mean that the problem appears to be
more nonlinear than anticipated. The current set of basic and superbasic variables have been
optimized as much as possible and a Price operation is necessary to continue, but it can’t continue
as the number of superbasic variables has already reached the limit specified by the optional
parameter Super Basics Limit.

In general, raise the Superbasics Limit s by a reasonable amount.

IFAIL ¼ 7

Numerical difficulties have been encountered and no further progress can be made.

Several circumstances could lead to this exit.

1. Subroutine USRFUN could be returning accurate function values but inaccurate gradients (or
vice versa). This is the most likely cause. Study the comments given for IFAIL ¼ 8, and do
your best to ensure that the coding is correct.

2. The function and gradient values could be consistent, but their precision could be too low. For
example, accidental use of a real data type when double precision was intended would lead to

a relative function precision of about 10�6 instead of something like 10�15. The default Major

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.13

Optimality Tolerance of 10�6 would need to be raised to about 10�3 for optimality to be
declared (at a rather suboptimal point). Of course, it is better to revise the function coding to
obtain as much precision as economically possible.

3. If function values are obtained from an expensive iterative process, they may be accurate to
rather few significant figures, and gradients will probably not be available. One should specify

Function Precision t

Major Optimality Tolerance
ffiffi
t

p

but even then, if t is as large as 10�5 or 10�6 (only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

4. An LU factorization of the basis has just been obtained and used to recompute the basic
variables xB, given the present values of the superbasic and nonbasic variables. A step of
‘iterative refinement’ has also been applied to increase the accuracy of xB. However, a row
check has revealed that the resulting solution does not satisfy the current constraints
Ax� s ¼ 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. If there are some linear
constraints and variables, try Scale Option 1 if scaling has not yet been used.

For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of Umax and Growth in Section 12.3
and set the LU Factor Tolerance to 2.0 (or possibly even smaller, but not less than 1.0).

5. The first factorization attempt will have found the basis to be structurally or numerically
singular. (Some diagonals of the triangular matrix U were respectively zero or smaller than a
certain tolerance.) The associated variables are replaced by slacks and the modified basis is
refactorized, but singularity persists. This must mean that the problem is badly scaled, or the
LU Factor Tolerance is too much larger than 1.0. This is highly unlikely to occur.

IFAIL ¼ 8

Derivative appears to be incorrect.

A check has been made on some elements of the Jacobian as returned in the parameter G of
USRFUN. At least one value disagrees remarkably with its associated forward difference estimate
(the relative difference between the computed and estimated values is 1.0 or more). This exit is a
safeguard, since E04VHF will usually fail to make progress when the computed gradients are
seriously inaccurate. In the process it may expend considerable effort before terminating with
IFAIL ¼ 7.

Check the functions and Jacobian computation very carefully in USRFUN. A simple omission
could explain everything. If a component is very large, then give serious thought to scaling the
function or the nonlinear variables.

If you feel certain that the computed Jacobian is correct (and that the forward-difference estimate is
therefore wrong), you can specify Verify Level 0 to prevent individual elements from being
checked. However, the optimization procedure may have difficulty.

IFAIL ¼ 9

Undefined user-supplied function.

The user has indicated that the problem functions are undefined by assigning the value
STATUS ¼ �1 on exit from USRFUN. E04VHF attempts to evaluate the problem functions
closer to a point at which the functions are already known to be defined. This exit occurs if
E04VHF is unable to find a point at which the functions are defined. This will occur in the case of:

- undefined functions with no recovery possible;

- undefined functions at the first point;

E04VHF NAG Fortran Library Manual

E04VHF.14 [NP3657/21]

- undefined functions at the first feasible point; or

- undefined functions when checking derivatives.

IFAIL ¼ 10

User requested termination.

The user has indicated the wish to terminate solution of the current problem by setting STATUS to a
value < �1 on exit from USRFUN.

IFAIL ¼ 11

Internal memory allocation failed when attempting to obtain the required workspace. Please contact
NAG.

IFAIL ¼ 12

Internal memory allocation was insufficient. Please contact NAG.

IFAIL ¼ 13

An error has occurred in the basis package, perhaps indicating incorrect setup of arrays. Set the
optional argument Print File (see Section 11.2) and examine the output carefully for further
information.

IFAIL ¼ 14

An unexpected error has occurred. Set the optional argument Print File (see Section 11.2) and
examine the output carefully for further information.

7 Accuracy

If the value of the optional parameter Major Optimality Tolerance is set to 10�d (default value ¼
ffiffi
�

p
)

and IFAIL ¼ 0 on exit, then the final value of f xð Þ should have approximately d correct significant digits.

8 Further Comments

This section describes the final output produced by E04VHF. Intermediate and other output are given in
Section 12.

8.1 The Final Output

If Print File > 0, the final output, including a listing of status of every variable and constraint will be sent
to the channel numbers associated with Print File. The following describes the output for each constraint
(row) and variable (column). A full stop (.) is printed for any numerical value that is zero.

The ith constraint takes the form

� � Fix � �.

Internally, the constraints take the form F xð Þ � s ¼ 0, where s is the set of slack variables (which happen
to satisfy the bounds � � s � �). For the ith constraint it is the slack variable si that is directly available,
and it is sometimes convenient to refer to its state. A ‘.’ is printed for any numerical value that is exactly
zero.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.15

Label Description

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of Fi.

State the state of si (the state of Fi relative to the bounds � and �). The various states
possible are as follows:

LL si is nonbasic at its lower limit, �.

UL si is nonbasic at its upper limit, �.

EQ si is nonbasic and fixed at the value � ¼ �.

FR si is nonbasic and currently zero, even though it is free to take any value
between its bounds � and �.

BS si is basic.

SBS si is superbasic.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0
(see Section 11.2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (see Section 11.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
parameter Major Optimality Tolerance (see Section 11.2), the solution
would not be declared optimal because the reduced gradient for the variable
would not be considered negligible.

Activity is the value of Fi at the final iterate.

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Limit is �, the lower bound specified for the variable si. None indicates that
FLOWðjÞ � �bigbnd.

Upper Bound is �, the upper bound specified for the variable si. None indicates that
FUPPðjÞ � bigbnd.

Dual Activity is the value of the dual variable �i (the Lagrange multiplier for the ith constraint).

The full vector � always satisfies BT� ¼ gB, where B is the current basis matrix
and gB contains the associated gradients for the current objective function. For FP
problems, �i is set to zero.

i gives the index i of the ith row.

E04VHF NAG Fortran Library Manual

E04VHF.16 [NP3657/21]

The COLUMNS section

Let the jth component of x be the variable xj and assume that it satisfies the bounds � � xj � �. A ‘.’ is

printed for any numerical value that is exactly zero.

Label Description

Number is the column number j. (This is used internally to refer to xj in the intermediate

output.)

Column gives the name of xj.

State the state of xj relative to the bounds � and �. The various states possible are as

follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.

FR xj is nonbasic and currently zero, even though it is free to take any value

between its bounds � and �.

BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0
(see Section 11.2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (see Section 11.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
parameter Major Optimality Tolerance (see Section 11.2), the solution
would not be declared optimal because the reduced gradient for the variable
would not be considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Bound is the lower bound specified for the variable. None indicates that
XLOWðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that
XUPPðjÞ � bigbnd.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.17

Reduced Gradnt is the value of the reduced gradient dj ¼ gj � �Taj where aj is the jth column of

the constraint matrix. For FP problems, dj is set to zero.

m + j is the value of mþ j.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9 Example

This is a reformulation of Problem 74 from Hock and Schittkowski (1981) and involves the minimization
of the nonlinear function

f xð Þ ¼ 10�6x3
3 þ 2

3
� 10�6x3

4 þ 3x3 þ 2x4

subject to the bounds

�0:55 � x1 � 0:55,
�0:55 � x2 � 0:55,

0 � x3 � 1200,

0 � x4 � 1200,

to the nonlinear constraints

1000 sin �x1 � 0:25ð Þ þ1000 sin �x2 � 0:25ð Þ � x3 ¼ � 894:8,
1000 sin x1 � 0:25ð Þ þ1000 sin x1 � x2 � 0:25ð Þ � x4 ¼ � 894:8,
1000 sin x2 � 0:25ð Þ þ1000 sin x2 � x1 � 0:25ð Þ ¼ � 1294:8,

and to the linear constraints

�x1 þ x2 � �0:55,
x1 � x2 � �0:55.

The initial point, which is infeasible, is

x0 ¼ 0, 0, 0, 0ð ÞT ,
and f x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 0:11887;�0:39623; 679:94; 1026:0ð ÞT ,

and f x�ð Þ ¼ 5126:4. All the nonlinear constraints are active at the solution.

The example in the document for E04VJF solves the above problem. It first calls E04VJF to determine the
sparsity pattern before calling E04VHF.

The example in the document for E04VKF solves the above problem using some of the optional
parameters described in Section 11.

The formulation of the problem combines the constraints and the objective into a single vector (F) which
is split into linear part (ALx) and a nonlinear part (f). For example we could write

F ¼

1000 sin �x1 � 0:25ð Þ þ1000 sin �x2 � 0:25ð Þ � x3
1000 sin x1 � 0:25ð Þ þ1000 sin x1 � x2 � 0:25ð Þ � x4
1000 sin x2 � 0:25ð Þ þ1000 sin x2 � x1 � 0:25ð Þ

�x1 þ x2

x1 � x2

10�6x33 þ 2
3
� 10�6x3

4 þ 3x3 þ 2x4

0
BBBBB@

1
CCCCCA

¼ f þALx

where

E04VHF NAG Fortran Library Manual

E04VHF.18 [NP3657/21]

f ¼

1000 sin �x1 � 0:25ð Þ þ1000 sin �x2 � 0:25ð Þ
1000 sin x1 � 0:25ð Þ þ1000 sin x1 � x2 � 0:25ð Þ
1000 sin x2 � 0:25ð Þ þ1000 sin x2 � x1 � 0:25ð Þ

0

0

10�6x33 þ 2
3
� 10�6x34

0
BBBBB@

1
CCCCCA

and

AL ¼

0 0 �1 0

0 0 0 �1

0 0 0 0

�1 1 0 0

1 �1 0 0

0 0 3 2

0
BBBBBB@

1
CCCCCCA

The non-zero elements of AL need to be stored in the triples IAFUNðkÞ; JAVARðkÞ;AðkÞð Þ in any order.
For example

k 1 2 3 4 5 6 7 8

IAFUNðkÞ 1 2 4 4 5 5 6 6

JAVARðkÞ 3 4 1 2 1 2 3 4

AðkÞ �1 �1 �1 1 1 �1 3 2

The nonlinear functions f and the Jacobian need to be supplied in USRFUN. Please note that there is no
need to assign any value to f4 or f5 as there is no nonlinear part in F4 or F5.

The non-zero entries of the Jacobian of f are

@f1
@x1

¼ �1000 cos �x1 � 0:25ð Þ
@f1
@x2

¼ �1000 cos �x2 � 0:25ð Þ
@f2
@x1

¼ 1000 cos x1 � 0:25ð Þ þ 1000 cos x1 � x2 � 0:25ð Þ
@f2
@x2

¼ �1000 cos x1 � x2 � 0:25ð Þ
@f3
@x1

¼ �1000 cos x2 � x1 � 0:25ð Þ
@f3
@x2

¼ 1000 cos x2 � 0:25ð Þ þ 1000 cos x2 � x1 � 0:25ð Þ
@f6
@x3

¼ 3� 10�6x2
3

@f6
@x4

¼ 2� 10�6x2
4

So the arrays IGFUN and JGVAR must contain:

k 1 2 3 4 5 6 7 8

IGFUNðkÞ 1 1 2 2 3 3 6 6

JGVARðkÞ 1 2 1 2 1 2 3 4

and USRFUN must return in GðkÞ ¼ @fi
@xj

where i ¼ IGFUNðkÞ and j ¼ JGVARðkÞ.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.19

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the

Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,

the results produced may not be identical for all implementations.

* E04VHF Example Program Text
* Mark 21 Release. NAG Copyright 2004.

IMPLICIT NONE
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NFMAX, LENAMX, LENGMX
PARAMETER (NMAX=100,NFMAX=100,LENAMX=300,LENGMX=300)
INTEGER LENCW, LENIW, LENRW
PARAMETER (LENCW=600,LENIW=600,LENRW=600)

* .. Local Scalars ..
DOUBLE PRECISION OBJADD, SINF
INTEGER I, IFAIL, LENA, LENG, N, NEA, NEG, NF, NFNAME,

+ NINF, NS, NXNAME, OBJROW, START
CHARACTER*8 PROB

* .. Local Arrays ..
DOUBLE PRECISION A(LENAMX), F(NFMAX), FLOW(NFMAX), FMUL(NFMAX),

+ FUPP(NFMAX), RUSER(1), RW(LENRW), X(NMAX),
+ XLOW(NMAX), XMUL(NMAX), XUPP(NMAX)
INTEGER FSTATE(NFMAX), IAFUN(LENAMX), IGFUN(LENGMX),

+ IUSER(1), IW(LENIW), JAVAR(LENAMX),
+ JGVAR(LENGMX), XSTATE(NMAX)
CHARACTER*8 CUSER(1), CW(LENCW), FNAMES(NFMAX), XNAMES(NMAX)

* .. External Subroutines ..
EXTERNAL E04VGF, E04VHF, E04VLF, E04VMF, USRFUN

* .. Intrinsic Functions ..
INTRINSIC MAX

* .. Executable Statements ..
WRITE (NOUT,*) ’E04VHF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, NF
READ (NIN,*) NEA, NEG, OBJROW, START

*
IF (N.LE.NMAX .AND. NF.LE.NFMAX .AND. NEA.LE.LENAMX .AND. NEG.LE.

+ LENGMX) THEN
LENA = MAX(1,NEA)
LENG = MAX(1,NEG)
NXNAME = N
NFNAME = NF
OBJADD = 0.0D0
PROB = ’ ’

*
* Read the variable names XNAMES

READ (NIN,*) (XNAMES(I),I=1,NXNAME)
* Read the function names FNAMES

READ (NIN,*) (FNAMES(I),I=1,NFNAME)
*
* Read the sparse matrix A, the linear part of F

DO 20 I = 1, NEA
* For each element read row, column, A(row,column)

READ (NIN,*) IAFUN(I), JAVAR(I), A(I)
20 CONTINUE

* Read the structure of sparse matrix G, the nonlinear part of F
DO 40 I = 1, NEG

* For each element read row, column
READ (NIN,*) IGFUN(I), JGVAR(I)

40 CONTINUE
*
* Read the lower and upper bounds on the variables

DO 60 I = 1, N
READ (NIN,*) XLOW(I), XUPP(I)

60 CONTINUE
*

E04VHF NAG Fortran Library Manual

E04VHF.20 [NP3657/21]

* Read the lower and upper bounds on the functions
DO 80 I = 1, NF

READ (NIN,*) FLOW(I), FUPP(I)
80 CONTINUE

*
* Initialise X, XSTATE, XMUL, F, FSTATE, FMUL

READ (NIN,*) (X(I),I=1,N)
READ (NIN,*) (XSTATE(I),I=1,N)
READ (NIN,*) (XMUL(I),I=1,N)
READ (NIN,*) (F(I),I=1,NF)
READ (NIN,*) (FSTATE(I),I=1,NF)
READ (NIN,*) (FMUL(I),I=1,NF)

*
* Call E04VGF to initialise E04VHF.

IFAIL = -1
CALL E04VGF(CW,LENCW,IW,LENIW,RW,LENRW,IFAIL)

*
* By default E04VHF does not print monitoring
* information. Set the print file unit or the summary
* file unit to get information.

CALL E04VMF(’Print file’,NOUT,CW,IW,RW,IFAIL)
*
* Solve the problem.

IFAIL = -1
CALL E04VHF(START,NF,N,NXNAME,NFNAME,OBJADD,OBJROW,PROB,USRFUN,

+ IAFUN,JAVAR,A,LENA,NEA,IGFUN,JGVAR,LENG,NEG,XLOW,
+ XUPP,XNAMES,FLOW,FUPP,FNAMES,X,XSTATE,XMUL,F,
+ FSTATE,FMUL,NS,NINF,SINF,CW,LENCW,IW,LENIW,RW,
+ LENRW,CUSER,IUSER,RUSER,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99999) IFAIL
IF (IFAIL.EQ.0) THEN

WRITE (NOUT,99998) F(OBJROW)
WRITE (NOUT,99997) (X(I),I=1,N)

END IF
*

END IF
STOP

*
99999 FORMAT (1X,’On exit from E04VHF, IFAIL = ’,I5)
99998 FORMAT (1X,’Final objective value = ’,F11.1)
99997 FORMAT (1X,’Optimal X = ’,7F9.2)

END
*

SUBROUTINE USRFUN(STATUS,N,X,NEEDF,NF,F,NEEDG,LENG,G,CUSER,IUSER,
+ RUSER)
IMPLICIT NONE

* .. Scalar Arguments ..
INTEGER LENG, N, NEEDF, NEEDG, NF, STATUS

* .. Array Arguments ..
DOUBLE PRECISION F(NF), G(LENG), RUSER(*), X(N)
INTEGER IUSER(*)
CHARACTER*8 CUSER(*)

* .. Intrinsic Functions ..
INTRINSIC COS, SIN

* .. Executable Statements ..
IF (NEEDF.GT.0) THEN

* The nonlinear components of f_i(x) need to be assigned,
* for i = 1 to NF

F(1) = 1000.0D+0*SIN(-X(1)-0.25D+0) + 1000.0D+0*SIN(-X(2)
+ -0.25D+0)

F(2) = 1000.0D+0*SIN(X(1)-0.25D+0) + 1000.0D+0*SIN(X(1)-X(2)
+ -0.25D+0)

F(3) = 1000.0D+0*SIN(X(2)-X(1)-0.25D+0) + 1000.0D+0*SIN(X(2)
+ -0.25D+0)

* N.B. in this example there is no need to assign for the wholly
* linear components f_4(x) and f_5(x).

F(6) = 1.0D-6*X(3)**3 + 2.0D-6*X(4)**3/3.0D+0
END IF

*

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.21

IF (NEEDG.GT.0) THEN
* The derivatives of the function f_i(x) need to be assigned.
* G(k) should be set to partial derivative df_i(x)/dx_j where
* i = IGFUN(k) and j = IGVAR(k), for k = 1 to LENG.

G(1) = -1000.0D+0*COS(-X(1)-0.25D+0)
G(2) = -1000.0D+0*COS(-X(2)-0.25D+0)
G(3) = 1000.0D+0*COS(X(1)-0.25D+0) + 1000.0D+0*COS(X(1)-X(2)

+ -0.25D+0)
G(4) = -1000.0D+0*COS(X(1)-X(2)-0.25D+0)
G(5) = -1000.0D+0*COS(X(2)-X(1)-0.25D+0)
G(6) = 1000.0D+0*COS(X(2)-X(1)-0.25D+0) + 1000.0D+0*COS(X(2)

+ -0.25D+0)
G(7) = 3.0D-6*X(3)**2
G(8) = 2.0D-6*X(4)**2

END IF
*

RETURN
END

9.2 Program Data

E04VHF Example Program Data
4 6 : Values of N and NF
8 8 6 0 : Values of NEA, NEG, OBJROW and START

’X1’ ’X2’ ’X3’ ’X4’ : XNAMES
’NlnCon 1’ ’NlnCon 2’ ’NlnCon 3’ ’LinCon 1’ ’LinCon 2’ ’Objectiv’ : FNAMES

1 3 -1.0D0 : Nonzero elements of sparse matrix A, the linear part of F.
2 4 -1.0D0 : Each row IAFUN(i), JAVAR(i), A(IAFUN(i),JAVAR(i)), i = 1 to NEA
4 1 -1.0D0
4 2 1.0D0
5 1 1.0D0
5 2 -1.0D0
6 3 3.0D0
6 4 2.0D0

1 1 : Nonzero row/column structure of G, IGFUN(i), JGVAR(i), i = 1 to NEG
1 2
2 1
2 2
3 1
3 2
6 3
6 4

-0.55D0 0.55D0 : Bounds on the variables, XLOW(i), XUPP(i), for i = 1 to N
-0.55D0 0.55D0
0.0D0 1200.0D0
0.0D0 1200.0D0

-894.8D0 -894.8D0 : Bounds on the functions, FLOW(i), FUPP(i), for i = 1 to NF
-894.8D0 -894.8D0

-1294.8D0 -1294.8D0
-0.55D0 1.0D25
-0.55D0 1.0D25
-1.0D25 1.0D25

0.0 0.0 0.0 0.0 : Initial values of X(i), for i = 1 to N
0 0 0 0 : Initial values of XSTATE(i), for i = 1 to N
0.0 0.0 0.0 0.0 : Initial values of XMUL(i), for i = 1 to N

0.0 0.0 0.0 0.0 0.0 0.0 : Initial values of F(i), for i = 1 to NF
0 0 0 0 0 0 : Initial values of FSTATE(i), for i = 1 to NF
0.0 0.0 0.0 0.0 0.0 0.0 : Initial values of FMUL(i), for i = 1 to NF

E04VHF NAG Fortran Library Manual

E04VHF.22 [NP3657/21]

9.3 Program Results

E04VHF Example Program Results

Parameters

==========

Files

Solution file.......... 0 Old basis file 0 (Print file)........... 6

Insert file............ 0 New basis file 0 (Summary file)......... 0

Punch file............. 0 Backup basis file...... 0

Load file.............. 0 Dump file.............. 0

Frequencies

Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100

Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000

QP subproblems

QPsolver Cholesky......

Scale tolerance........ 0.900 Minor feasibility tol.. 1.00E-06 Iteration limit........ 10000

Scale option........... 0 Minor optimality tol.. 1.00E-06 Minor print level...... 1

Crash tolerance........ 0.100 Pivot tolerance........ 1.11E-15 Partial price.......... 1

Crash option........... 3 Elastic weight......... 1.00E+04 Prtl price section (A) 4

New superbasics........ 99 Prtl price section (-I) 6

The SQP Method

Minimize............... Cold start............. Proximal Point method.. 1

Nonlinear objectiv vars 4 Objective Row.......... 6 Function precision..... 1.72E-13

Unbounded step size.... 1.00E+20 Superbasics limit...... 4 Difference interval.... 4.15E-07

Unbounded objective.... 1.00E+15 Hessian dimension...... 4 Central difference int. 5.57E-05

Major step limit....... 2.00E+00 Derivative linesearch.. Derivative option...... 1

Major iterations limit. 1000 Linesearch tolerance... 0.90000 Verify level........... 0

Minor iterations limit. 500 Penalty parameter...... 0.00E+00 Major Print Level...... 1

Major optimality tol... 2.00E-06

Hessian Approximation

Full-Memory Hessian.... Hessian updates........ 99999999 Hessian frequency...... 99999999

Hessian flush.......... 99999999

Nonlinear constraints

Nonlinear constraints.. 3 Major feasibility tol.. 1.00E-06 Violation limit........ 1.00E+06

Nonlinear Jacobian vars 2

Miscellaneous

LU factor tolerance.... 3.99 LU singularity tol..... 1.05E-08 Timing level........... 0

LU update tolerance.... 3.99 LU swap tolerance...... 1.03E-04 Debug level............ 0

LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No

Nonlinear constraints 3 Linear constraints 3

Nonlinear variables 4 Linear variables 0

Jacobian variables 2 Objective variables 4

Total constraints 6 Total variables 4

The user has defined 8 out of 8 first derivatives

Cheap test of user-supplied problem derivatives...

The constraint gradients seem to be OK.

--> The largest discrepancy was 2.20E-08 in constraint 6

The objective gradients seem to be OK.

Gradient projected in one direction 0.00000000000E+00

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.23

Difference approximation 4.48709939860E-21

Itns Major Minors Step nCon Feasible Optimal MeritFunction L+U BSwap nS condHz Penalty

3 0 3 1 8.0E+02 1.0E+00 0.0000000E+00 17 1 1.7E+07 _ r

5 1 2 1.2E-03 2 4.0E+02 9.9E-01 9.6317131E+05 16 1 4.8E+06 2.8E+00 _n rl

6 2 1 1.3E-03 3 2.7E+02 5.5E-01 9.6122945E+05 16 2.8E+00 _s l

6 3 0 7.5E-03 4 8.8E+01 5.4E-01 9.4691061E+05 16 2.8E+00 _ l

6 4 0 2.3E-02 5 2.9E+01 5.3E-01 9.0468403E+05 16 2.8E+00 _ l

6 5 0 6.9E-02 6 8.9E+00 5.0E-01 7.8452897E+05 16 2.8E+00 _ l

7 6 1 2.2E-01 7 2.3E+00 5.5E+01 4.8112339E+05 16 1 8.7E+03 2.8E+00 _ l

8 7 1 8.3E-01 8 1.7E-01 4.2E+00 2.6898257E+04 16 1 7.6E+03 2.8E+00 _ l

9 8 1 1.0E+00 9 1.8E-02 8.7E+01 6.2192920E+03 15 1 1 1.2E+02 2.8E+00 _

10 9 1 1.0E+00 10 1.7E-02 7.9E+00 5.4526185E+03 15 1 9.4E+01 2.8E+00 _

11 10 1 1.0E+00 11 1.7E-04 9.6E-01 5.1266089E+03 15 1 1.0E+02 2.8E+00 _

12 11 1 1.0E+00 12 1.7E-06 5.8E-02 5.1264988E+03 15 1 9.5E+01 2.8E+00 _

13 12 1 1.0E+00 13 (1.2E-08) 6.9E-05 5.1264981E+03 15 1 9.5E+01 2.8E+00 _

14 13 1 1.0E+00 14 (6.7E-15)(3.0E-09) 5.1264981E+03 15 1 9.5E+01 6.0E+00 _

E04VHF EXIT 0 -- finished successfully

E04VHF INFO 1 -- optimality conditions satisfied

Problem name

No. of iterations 14 Objective value 5.1264981096E+03

No. of major iterations 13 Linear objective 4.0919702248E+03

Penalty parameter 6.035E+00 Nonlinear objective 1.0345278848E+03

No. of calls to funobj 15 No. of calls to funcon 15

No. of superbasics 1 No. of basic nonlinears 3

No. of degenerate steps 0 Percentage 0.00

Max x 4 1.0E+03 Max pi 3 5.5E+00

Max Primal infeas 0 0.0E+00 Max Dual infeas 1 4.6E-08

Nonlinear constraint violn 5.7E-12

Name Objective Value 5.1264981096E+03

Status Optimal Soln Iteration 14 Superbasics 1

Objective (Min)

RHS

Ranges

Bounds

Section 1 - Rows

Number ...Row.. State ...Activity... Slack Activity ..Lower Limit. ..Upper Limit. .Dual Activity ..i

5 NlnCon 1 EQ -894.80000 0.00000 -894.80000 -894.80000 -4.38698 1

6 NlnCon 2 EQ -894.80000 0.00000 -894.80000 -894.80000 -4.10563 2

7 NlnCon 3 EQ -1294.80000 0.00000 -1294.80000 -1294.80000 -5.46328 3

8 LinCon 1 BS -0.51511 0.03489 -0.55000 None . 4

9 LinCon 2 BS 0.51511 1.06511 -0.55000 None . 5

10 Objectiv BS 4091.97022 4091.97022 None None -1.0 6

Section 2 - Columns

Number .Column. State ...Activity... .Obj Gradient. ..Lower Limit. ..Upper Limit. Reduced Gradnt m+j

1 X1 BS 0.11888 . -0.55000 0.55000 0.00000 7

2 X2 BS -0.39623 . -0.55000 0.55000 0.00000 8

3 X3 SBS 679.94532 4.38698 . 1200.00000 0.00000 9

4 X4 BS 1026.06713 4.10563 . 1200.00000 0.00000 10

On exit from E04VHF, IFAIL = 0

Final objective value = 5126.5

Optimal X = 0.12 -0.40 679.95 1026.07

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed

algorithm description that may be needed in order to understand Sections 11 and 12. Section 11 describes the

optional parameters that may be set by calls to E04VKF, E04VLF, E04VMF and/or E04VNF. Section 12

describes the quantities that can be requested to monitor the course of the computation.

E04VHF NAG Fortran Library Manual

E04VHF.24 [NP3657/21]

10 Algorithmic Details

Here we summarize the main features of the SQP algorithm used in E04VHF and introduce some
terminology used in the description of the subroutine and its arguments. The SQP algorithm is fully
described in Gill et al. (2002).

10.1 Constraints and Slack Variables

The upper and lower bounds on the components of f xð Þ and ALx are said to define the general

constraints of the problem. E04VHF converts the general constraints to equalities by introducing a set of

slack variables s ¼ s1; s2; . . . ; smð ÞT . For example, the linear constraint 5 � 3x1 þ 3x2 � þ1 is replaced
by 2x1 þ 3x2 � s1 ¼ 0 together with the bounded slack 5 � s1 � þ1. The minimization problem (1) can
therefore be written in the equivalent form

minimize
x;s

f0 xð Þ subject to
f xð Þ
ALx

� �
� s ¼ 0; l � x

s

� �
� u. ð3Þ

The general constraints become the equalities f xð Þ � sN ¼ 0 and ALx� sL ¼ 0, where sL and sN are
known as the linear and nonlinear slacks.

10.2 Major Iterations

The basic structure of the SQP algorithm involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that satisfy the linear constraints and converge to a point that satisfies
the first-order conditions for optimality. At each iterate a QP subproblem is used to generate a search
direction towards the next iterate xkþ1. The constraints of the subproblem are formed from the linear
constraints ALx� sL ¼ 0 and the nonlinear constraint linearization

f xkð Þ þ f 0 xkð Þ x� xkð Þ � sN ¼ 0, ð4Þ

where f 0 xkð Þ denotes the Jacobian matrix, whose elements are the first derivatives of f xð Þ evaluated at xk.
The QP constraints therefore comprise the m linear constraints

f 0 xkð Þx �sN ¼ �f xkð Þ þ f 0 xkð Þxk,
ALx �sL ¼ 0,

ð5Þ

where x and s are bounded above and below by u and l as before. If the m by n matrix A and m-vector b
are defined as

A ¼ f 0 xkð Þ
AL

� �
and b ¼ �f xkð Þ þ f 0 xkð Þxk

0

� �
, ð6Þ

then the QP subproblem can be written as

minimize
x;s

q xð Þ subject to Ax� s ¼ b, l � x
s

� �
� u, ð7Þ

where q xð Þ is a quadratic approximation to a modified Lagrangian function (see Gill et al. (2002)).

10.3 Minor Iterations

Solving the QP subproblem is itself an iterative procedure. The iterations of the QP solver are the minor

iterations of the SQP method. At each minor iteration, the constraints Ax� s ¼ b are (conceptually)
partitioned into the form

BxB þ SxS þNxN ¼ b, ð8Þ
where the basic matrix B is square and nonsingular. The elements of xB, xS and xN are called the basic,
superbasic and nonbasic variables respectively; they are a permutation of the elements of x and s. At a
QP subproblem, the basic and superbasic variables will lie somewhere between their bounds, while the
nonbasic variables will normally be equal to one of their bounds. At each iteration, xS is regarded as a set
of independent variables that are free to move in any desired direction, namely one that will improve the
value of the QP objective (or the sum of infeasibilities). The basic variables are then adjusted in order to
ensure that x; sð Þ continues to satisfy Ax� s ¼ b. The number of superbasic variables (nS , say) therefore

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.25

indicates the number of degrees of freedom remaining after the constraints have been satisfied. In broad
terms, nS is a measure of how nonlinear the problem is. In particular, nS will always be zero for LP
problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic
and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax� s ¼ b are the dual variables �. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj. The reduced gradients for the variables x are the

quantities g�AT�, where g is the gradient of the QP objective, and the reduced gradients for the slacks
are the dual variables �. The QP subproblem is optimal if dj � 0 for all nonbasic variables at their lower

bounds, dj � 0 for all nonbasic variables at their upper bounds, and dj ¼ 0 for other variables, including

superbasics. In practice, an approximate QP solution x̂xk; ŝsk; �̂�kð Þ is found by relaxing these conditions.

10.4 The Merit Function

After a QP subproblem has been solved, new estimates of the solution are computed using a line search on
the augmented Lagrangian merit function

M x; s; �ð Þ ¼ f0 xð Þ � �T f xð Þ � sNð Þ þ 1

2
f xð Þ � sNð ÞTD f xð Þ � sNð Þ, ð9Þ

where D is a diagonal matrix of penalty parameters Dii � 0ð Þ. If xk; sk; �kð Þ denotes the current solution
estimate and x̂xk; ŝsk; �̂�kð Þ denotes the QP solution, the line search determines a step �k 0 < �k � 1ð Þ such
that the new point

xkþ1

skþ1

�kþ1

0
@

1
A ¼

xk

sk
�k

0
@

1
Aþ �k

x̂xk � xk
ŝsk � sk
�̂�k � �k

0
@

1
A ð10Þ

gives a sufficient decrease in the merit function (see (9)). When necessary, the penalties in D are increased
by the minimum-norm perturbation that ensures descent for M (see Gill et al. (1992)). sN is adjusted to
minimize the merit function as a function of s prior to the solution of the QP subproblem (see Gill et al.
(1986c) and Eldersveld (1991)).

10.5 Treatment of Constraint Infeasibilities

E04VHF makes explicit allowance for infeasible constraints. First, infeasible linear constraints are
detected by solving the linear program

minimize
x;v;w

eT vþ wð Þ subject to l � x
ALx� vþ w

� �
� u, u � 0, w � 0, ð11Þ

where e is a vector of ones, and the nonlinear constraint bounds are temporarily excluded from l and u.
This is equivalent to minimizing the sum of the general linear constraint violations subject to the bounds
on x. (The sum is the ‘1-norm of the linear constraint violations. In the linear programming literature, the
approach is called elastic programming.)

The linear constraints are infeasible if the optimal solution of (11) has v 6¼ 0 or w 6¼ 0. E04VHF then
terminates without computing the nonlinear functions.

Otherwise, all subsequent iterates satisfy the linear constraints. (Such a strategy allows linear constraints to
be used to define a region in which the functions can be safely evaluated.) E04VHF proceeds to solve
nonlinear problems as given, using search directions obtained from the sequence of QP subproblems (see
(7)).

If a QP subproblem proves to be infeasible or unbounded (or if the dual variable � for the nonlinear
constraints become large), E04VHF enters ‘elastic’ mode and thereafter solves the problem

minimize
x;v;w

f0 xð Þ þ �eT vþ wð Þ subject to l �
x

f xð Þ � vþ w
ALx

0
@

1
A � u, v � 0, w � 0, ð12Þ

E04VHF NAG Fortran Library Manual

E04VHF.26 [NP3657/21]

where � is a nonnegative parameter (the elastic weight), and f0 xð Þ þ �eT vþ wð Þ is called a composite

objective (the ‘1 penalty function for the nonlinear constraints).

The value of � may increase automatically by multiples of 10 if the optimal u and w continue to be non-
zero. If � is sufficiently large, this is equivalent to minimizing the sum of the nonlinear constraint
violations subject to the linear constraints and bounds.

The initial value of � is controlled by the optional parameters Elastic Mode and Elastic Weight.

11 Optional Parameters

Several optional parameters in E04VHF define choices in the problem specification or the algorithm logic.
In order to reduce the number of formal parameters of E04VHF these optional parameters have associated
default values that are appropriate for most problems. Therefore, the user need only specify those optional
parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or more, of the routines E04VKF, E04VLF, E04VMF
and E04VNF prior to a call to E04VHF.

E04VKF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04VKF (IOPTNS, CW, IW, RW, IFAIL)

can then be used to read the file on unit IOPTNS. IFAIL will be zero on successful exit. E04VKF should
be consulted for a full description of this method of supplying optional parameters.

E04VLF, E04VMF and E04VNF can be called to supply options directly, one call being necessary for each
optional parameter. For example,

CALL E04VLF (’Print Level = 5’, CW, IW, RW, IFAIL)

E04VLF, E04VMF and E04VNF should be consulted for a full description of this method of supplying
optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04VHF (unless they define invalid values) and so remain in effect
for subsequent calls to E04VHF, unless altered by the user.

11.1 Optional parameter checklist and default values

The following list gives the valid options. For each option, we give the keyword, any essential optional
qualifiers and the default value. A definition for each option can be found in Section 11.2. The minimum
abbreviation of each keyword is underlined. If no characters of an optional qualifier are underlined, the
qualifier may be omitted. The letter a denotes a phrase (character string) that qualifies an option. The
letters i and r denote INTEGER and double precision values required with certain options. The number �
is a generic notation for machine precision (see X02AJF), and �R denotes the relative precision of the
objective function (the optional parameter Function Precision; see below).

Optional Parameters Default Values

Backup Basis File Default ¼ 0
Central Difference Interval Default ¼ �4=15

Check Frequency Default ¼ 60
Crash Option Default ¼ 3
Crash Tolerance Default ¼ 0:1
Derivative Option Default ¼ 1
Defaults

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.27

Derivative Linesearch Default
Difference Interval Default ¼ �0:4

Dump File Default ¼ 0
Elastic Mode Default ¼ No
Elastic Weight Default ¼ 104

Expand Frequency Default ¼ 10000
Factorisation Frequency Default ¼ 50
Feasibility Tolerance Default ¼ 1:0D� 6
Feasible Point
Function Precision Default ¼ �0:8

Hessian Full Memory Default ¼ Full if n1 � 75
Hessian Limited Memory
Hessian Frequency Default ¼ 99999999
Hessian Updates Default ¼ 99999999
Insert File Default ¼ 0
Infinite Bound Size Default ¼ 1020

Linesearch Tolerance Default ¼ 0:9
List Default ¼ Nolist
Load File Default ¼ 0
LU Complete Pivoting
LU Density Tolerance Default ¼ 0:6
LU Factor Tolerance Default ¼ 3:99
LU Partial Pivoting Default
LU Rook Pivoting
LU Singularity Tolerance Default ¼

ffiffi
�

p

LU Update Tolerance Default ¼ 3:00
Major Feasibility Tolerance Default ¼ 1:0D� 6
Major Iterations Limit Default ¼ max 1000; nff g
Major Optimality Tolerance Default ¼ 2:0D� 6
Major Print Level Default ¼ 00001
Major Step Limit Default ¼ 2:0
Maximize
Minimize Default
Minor Feasibility Tolerance Default ¼ 1:0D� 6
Minor Iterations Limit Default ¼ 500
Minor Print Level Default ¼ 1
New Basis File Default ¼ 0
New Superbasics Limit Default ¼ 99
Nolist
Nonderivative Linesearch
Old Basis File Default ¼ 0
Partial Price Default ¼ 1
Pivot Tolerance Default ¼ 10� �
Print File Default ¼ 0
Print Frequency Default ¼ 100
Proximal Point Method Default ¼ 1
Punch File Default ¼ 0
Save Frequency Default ¼ 100
Scale Option Default ¼ 0
Scale Tolerance Default ¼ 0:9
Solution File Default ¼ 0
Summary File Default ¼ 0
Summary Frequency Default ¼ 100
Superbasics Limit Default ¼ min 500; n1ð Þ
Suppress Parameters
Timing Level Default ¼ 0
Unbounded Objective Default ¼ 1:0Dþ 15
Unbounded Step Size Default ¼ 1:0Dþ 20

E04VHF NAG Fortran Library Manual

E04VHF.28 [NP3657/21]

Verify Level Default ¼ 0
Violation Limit Default ¼ 1:0Dþ 6

11.2 Description of the optional parameters

Central Difference Interval r Default ¼ �4=15

When Derivative Option ¼ 0, the central-difference interval r is used near an optimal solution to obtain
more accurate (but more expensive) estimates of gradients. Twice as many function evaluations are

required compared to forward differencing. The interval used for the jth variable hj ¼ r 1þ xj
�� ��� �

. The

resulting derivative estimates should be accurate to O r2
� �

, unless the functions are badly scaled.

Check Frequency i Default ¼ 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made to see if the
current solution x satisfies the general linear constraints (the linear constraints and the linearized nonlinear
constraints, if any). The constraints are of the form Ax� s ¼ b, where s is the set of slack variables. To
perform the numerical test, the residual vector r ¼ b�Axþ s is computed. If the largest component of r
is judged to be too large, the current basis is refactorized and the basic variables are recomputed to satisfy
the general constraints more accurately.

Check Frequency 1 is useful for debugging purposes, but otherwise this option should not be needed.

Crash Option i Default ¼ 3
Crash Tolerance r Default ¼ 0:1

Except on restarts, an internal Crash procedure is used to select an initial basis from certain rows and
columns of the constraint matrix A �Ið Þ. The Crash Option i determines which rows and columns of
A are eligible initially, and how many times the Crash procedure is called. Columns of �I are used to pad
the basis where necessary.

i Meaning
0 The initial basis contains only slack variables: B ¼ I.
1 The Crash procedure is called once, looking for a triangular basis in all rows and columns of the

matrix A.
2 The Crash procedure is called twice (if there are nonlinear constraints). The first call looks for a

triangular basis in linear rows, and the iteration proceeds with simplex iterations until the linear
constraints are satisfied. The Jacobian is then evaluated for the first major iteration and the Crash
procedure is called again to find a triangular basis in the nonlinear rows (retaining the current basis
for linear rows).

3 The Crash procedure is called up to three times (if there are nonlinear constraints). The first two
calls treat linear equalities and linear inequalities separately. As before, the last call treats
nonlinear rows before the first major iteration.

If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound). The Crash procedure then makes several passes through
the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned to
‘pivot’ on a particular row if the column contains a suitably large element in a row that has not yet been
assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For remaining
unassigned rows, slack variables are inserted to complete the basis.

The Crash Tolerance r allows the starting Crash procedure to ignore certain ‘small’ non-zeros in each
column of A. If amax is the largest element in column j, other non-zeros of aij in the columns are

ignored if aij
�� �� � amax � r. (To be meaningful, r should be in the range 0 � r < 1.)

When r > 0:0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely to
be nonsingular and almost triangular. The intention is to obtain a starting basis containing more columns
of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some problems.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.29

Derivative Option i Default ¼ 1

Derivative Option specifies which nonlinear function gradients are known analytically and will be
supplied to E04VHF by the user subroutine USRFUN.

i Meaning
0 Some problem derivatives are unknown.
1 All problem derivatives are known.

The value i ¼ 1 should be used whenever possible. It is the most reliable and will usually be the most
efficient.

If i ¼ 0, E04VHF will estimate the missing components of G xð Þ using finite differences. This may
simplify the coding of subroutine USRFUN. However, it could increase the total run-time substantially
(since a special call to USRFUN is required for each column of the Jacobian which has a missing
element), and there is less assurance that an acceptable solution will be located. If the nonlinear variables
are not well scaled, it may be necessary to specify a nonstandard Difference Interval (see below).

For each column of the Jacobian, one call to USRFUN is needed to estimate all missing elements in that
column, if any. If the sparsity pattern of the Jacobian happens to be

� � �
? ?

� ?
� �

0
BB@

1
CCA

where � indicates known gradients and ? indicates unknown elements, E04VHF will use one call to
USRFUN to estimate the missing element in column 2, and another call to estimate both missing elements
in column 3. No calls are needed for columns 1 and 4.

At times, central differences are used rather than forward differences. Twice as many calls to USRFUN
are needed. (This is not under the user’s control.)

Derivative Linesearch Default
Nonderivative Linesearch

At each major iteration a line search is used to improve the merit function. A Derivative Linesearch uses
safeguarded cubic interpolation and requires both function and gradient values to compute estimates of the
step �k. If some analytic derivatives are not provided, or a Nonderivative Linesearch is specified,
E04VHF employs a line search based upon safeguarded quadratic interpolation, which does not require
gradient evaluations.

A nonderivative line search can be slightly less robust on difficult problems, and it is recommended that
the default be used if the functions and derivatives can be computed at approximately the same cost. If the
gradients are very expensive relative to the functions, a nonderivative line search may give a significant
decrease in computation time.

Difference Interval r Default ¼ �0:4

This alters the interval r that is used to estimate gradients by forward differences in the following
circumstances:

in the interval (‘cheap’) phase of verifying the problem derivatives;

for verifying the problem derivatives;

for estimating missing derivatives.

In all cases, a derivative with respect to xj is estimated by perturbing that component of x to the value

xj þ r 1þ xj

�� ��� �
, and then evaluating f0 xð Þ or f xð Þ at the perturbed point. The resulting gradient

estimates should be accurate to O rð Þ unless the functions are badly scaled. Judicious alteration of r may
sometimes lead to greater accuracy.

E04VHF NAG Fortran Library Manual

E04VHF.30 [NP3657/21]

Dump File i1 Default ¼ 0
Load File i2 Default ¼ 0

Dump File and Load File are similar to Punch File and Insert File, but they record solution information
in a manner that is more direct and more easily modified. A full description of information recorded in
Dump File and Load File is given in Gill et al. (1999).

If i1 > 0, the last solution obtained will be output to the file with unit number i1.

If i2 > 0, the Load File containing basis information will be read. The file will usually have been output
previously as a Dump File. The file will not be accessed if an Old Basis File or an Insert File is
specified.

Elastic Mode Default ¼ No

Normally E04VHF initiates elastic mode only when it seems necessary. Option Yes causes elastic mode to
be entered from the beginning.

Elastic Weight r Default ¼ 104

This keyword determines the intial weight � associated with the problem (12) (see Section 10.5).

At major iteration k, if elastic mode has not yet started, a scale factor �k ¼ 1þ g xkð Þk k1 is defined from

the current objective gradient. Elastic mode is then started if the QP subproblem is infeasible, or the QP
dual variables are larger in magnitude than �kr. The QP is re-solved in elastic mode with � ¼ �kr.

Thereafter, major iterations continue in elastic mode until they converge to a point that is optimal for (12)
(see Section 10.5). If the point is feasible for v ¼ w ¼ 0ð Þ, it is declared locally optimal. Otherwise, � is
increased by a factor of 10 and major iterations continue.

Expand Frequency i Default ¼ 10000

This option is part of the anti-cycling procedure designed to make progress even on highly degenerate
problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of violating the
bounds on the variables by a small amount. Suppose that the Minor Feasibility Tolerance is �. Over a
period of i iterations, the tolerance actually used by E04VHF increases from 0:5� to � (in steps of 0:5�=i).

For nonlinear models, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can occur only when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most of which are
eliminated during a resetting procedure). However, it also diminishes the freedom to choose a large pivot
element (see Pivot Tolerance).

Factorisation Frequency i Default ¼ 50

At most i basis changes will occur between factorizations of the basis matrix.

With linear programs, the basis factors are usually updated every iteration. The default i is reasonable for
typical problems. Higher values up to i ¼ 100 (say) may be more efficient on well scaled problems.

When the objective function is nonlinear, fewer basis updates will occur as an optimum is approached.
The number of iterations between basis factorizations will therefore increase. During these iterations a test
is made regularly (according to the Check Frequency) to ensure that the general constraints are satisfied.
If necessary the basis will be refactorized before the limit of i updates is reached.

Feasibility Tolerance i Default ¼ 1:0D� 6

See Minor Feasiblity Tolerance.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.31

Function Precision r Default ¼ �0:8

The relative function precision �r is intended to be a measure of the relative accuracy with which the
nonlinear functions can be computed. For example, if f xð Þ is computed as 1000.56789 for some relevant
x and if the first 6 significant digits are known to be correct, the appropriate value for �r would be
1:0D� 6.

Ideally the functions fi xð Þ should have magnitude of order 1. If all functions are substantially less than 1
in magnitude, �r should be the absolute precision. For example, if f xð Þ ¼ 1:23456789D� 4 at some point
and if the first 6 significant digits are known to be correct, the appropriate value for �r would be
1:0D� 10.)

The default value of �r is appropriate for simple analytic functions.

In some cases the function values will be the result of extensive computation, possibly involving a costly
iterative procedure that can provide few digits of precision. Specifying an appropriate Function Precision
may lead to savings, by allowing the line search procedure to terminate when the difference between
function values along the search direction becomes as small as the absolute error in the values.

Hessian Full Memory Default ¼ Full if n1 � 75
Hessian Limited Memory

These options select the method for storing and updating the approximate Hessian. (E04VHF uses a quasi-
Newton approximation to the Hessian of the Lagrangian. A BFGS update is applied after each major
iteration.)

If Hessian Full Memory is specified, the approximate Hessian is treated as a dense matrix and the BFGS
updates are applied explicitly. This option is most efficient when the number of nonlinear variables n1 is
not too large (say, less than 75). In this case, the storage requirement is fixed and one can expect 1-step Q-
superlinear convergence to the solution.

Hessian Limited Memory should be used on problems where n1 is very large. In this case a limited-
memory procedure is used to update a diagonal Hessian approximation Hr a limited number of times.
(Updates are accumulated as a list of vector pairs. They are discarded at regular intervals after Hr has
been reset to their diagonal.)

Hessian Frequency i Default ¼ 99999999

If Hessian Full Memory is selected and i BFGS updates have already been carried out, the Hessian
approximation is reset to the identity matrix. (For certain problems, occasional resets may improve
convergence, but in general they should not be necessary.)

Hessian Full Memory and Hessian Frequency ¼ 20 have a similar effect to Hessian Limited Memory
and Hessian Updates ¼ 20 (except that the latter retains the current diagonal during resets).

Hessian Updates i Default ¼ 99999999

If Hessian Limited Memory is selected and i BFGS updates have already been carried out, all but the
diagonal elements of the accumulated updates are discarded and the updating process starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate Hessian. However,
the more vectors stored, the greater the cost of each QP iteration. The default value is likely to give a
robust algorithm without significant expense, but faster convergence can sometimes be obtained with
signficantly fewer updates (e.g., i ¼ 5).

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound less
than or equal to �bigbnd will be regarded as minus infinity). If r � 0, the default value is used.

E04VHF NAG Fortran Library Manual

E04VHF.32 [NP3657/21]

Linesearch Tolerance r Default ¼ 0:9

This tolerance, r, controls the accuracy with which a steplength will be located along the direction of each
search iteration. At the start of each line search a target directional derivative for the merit function is
identified. This parameter determines the accuracy to which this target value is approximated.

r must be a double precision value in the range 0:0 � r � 1:0.

The default value r ¼ 0:9 requests just moderate accuracy in the line search.

If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try
r ¼ 0:1, 0:01 or 0:001.

If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If all

gradients are known, try r ¼ 0:99. (The number of major iterations might increase, but the total number of
function evaluations may decrease enough to compensate.)

If not all gradients are known, a moderately accurate search remains appropriate. Each search will require
only 1–5 function values (typically), but many function calls will then be needed to estimate missing
gradients for the next iteration.

List Default ¼ Nolist
Nolist

For E04VHF, normally each optional parameter specification is printed as it is supplied. Nolist may be
used to suppress the printing and List may be used to turn on printing.

LU Factor Tolerance r1 Default ¼ 3:99
LU Update Tolerance r2 Default ¼ 3:00

The values of r1 and r2 affect the stability of the basis factorization B ¼ LU , during refactorization and
updates respectively. The lower triangular matrix L is a product of matrices of the form

1

� 1

� �

where the multipliers � will satisfy �j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. They must satisfy r1, r2 � 1:0.

For large and relatively dense problems, r1 ¼ 10:0 or 5:0 (say) may give a useful improvement in stability
without impairing sparsity to a serious degree.

LU Partial Pivoting Default
LU Rook Pivoting
LU Complete Pivoting

The LU factorization implements a Markowitz-type search for a pivot that locally minimizes the fill-in
subject to a threshhold pivoting stability criterion. The default option is to use threshhold partial pivoting.
The options LU Rook Pivoting and LU Complete Pivoting are more expensive than partial pivoting but
are more stable and better at revealing rank.

LU Density Tolerance r1 Default ¼ 0:6
LU Singularity Tolerance r2 Default ¼

ffiffi
�

p

The density tolerance, r1, is used during LU factorization of the basis matrix. Columns of L and rows of
U are formed one at a time, and the remaining rows and columns of the basis are altered appropriately. At
any stage, if the density of the remaining matrix exceeds r1, the Markowitz strategy for choosing pivots is
terminated. The remaining matrix is factored by a dense LU procedure. Raising the density tolerance
towards 1.0 may give slightly sparser LU factors, with a slight increase in factorization time.

The singularity tolerance, r2, helps guard against ill-conditioned basis matrices. When the basis is

refactorized, the diagonal elements of U are tested as follows: if Ujj

�� �� � r2 or Ujj

�� �� < r2maxi Uij

�� ��, the jth

column of the basis is replaced by the corresponding slack variable. (This is most likely to occur after a
restart, or at the start of a major iteration.)

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.33

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For
example, a whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity
occurs, the basis could become very ill-conditioned and the optimization could progress very slowly (if at
all). Setting a larger tolerance r2 ¼ 1:0D� 5, say, may help cause a judicious change of basis.

Major Feasibility Tolerance r Default ¼ 1:0D� 6

This tolerance, r, specifies how accurately the nonlinear constraints should be satisfied. The default value
is appropriate when the linear and nonlinear constraints contain data to about that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of the solution. It is
required to satisfy

rowerr ¼ max
i

violi = xk k � r, ð13Þ

where violi is the violation of the ith nonlinear constraint i ¼ 1 : NFð Þ.
In the major iteration log (see Section 12.2, rowerr appears as the quantity labelled ‘Feasible’. If some of
the problem functions are known to be of low accuracy, a larger Major Feasibility Tolerance may be
appropriate.

Major Optimality Tolerance r Default ¼ 2:0D� 6

This tolerance, r, specifies the final accuracy of the dual variables. On successful termination, E04VHF
will have computed a solution x; s; �ð Þ such that

maxComp ¼ max
j

Compj = �k k � r, ð14Þ

where Compj is an estimate of the complementarity slackness for variable j j ¼ 1 : nþ nfð Þ. The values

Compi are computed from the final QP solution using the reduced gradients dj ¼ gj � �Taj (where gj is

the jth component of the objective gradient, aj is the associated column of the constraint matrix A �Ið Þ,
and � is the set of QP dual variables):

Compj ¼
djmin xj � lj; 1

� �
if dj � 0;

�djmin uj � xj; 1
� �

if dj < 0.

	 �
ð15Þ

In the Print File, maxComp appears as the quantity labelled ‘Optimal’.

Major Iterations Limit i Default ¼ max 1000; nff g
This is the maximum number of major iterations allowed. It is intended to guard against an excessive
number of linearizations of the constraints.

Major Print Level i Default ¼ 00001

This controls the amount of output to the Print File and Summary File at each major iteration. Major
Print Level 0 suppresses most output, except for error messages. Major Print Level 1 gives normal
output for linear and nonlinear problems, and Major Print Level 11 gives additional details of the
Jacobian factorization that commences each major iteration.

In general, the value being specified may be thought of as a binary number of the form

Major Print Level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

s a single line that gives a summary of each major iteration. (This entry in JFDXbs is not strictly
binary since the summary line is printed whenever JFDXbs � 1;

b basis statistics, i.e., information relating to the basis matrix whenever it is refactorized. (This output
is always provided if JFDXbs � 10;

X xk, the nonlinear variables involved in the objective function or the constraints;

D �k, the dual variables for the nonlinear constraints;

E04VHF NAG Fortran Library Manual

E04VHF.34 [NP3657/21]

F f0 xkð Þ, the values of the nonlinear constraint functions;

J J xkð Þ, the Jacobian matrix.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.

If J ¼ 1, the Jacobian matrix will be output column-wise at the start of each major iteration. Column j
will be preceded by the value of the corresponding variable xj and a key to indicate whether the variable is

basic, superbasic or nonbasic. (Hence if J ¼ 1, there is no reason to specify X ¼ 1 unless the objective
contains more nonlinear variables than the Jacobian.) A typical line of output is

3 1.250000D+-1 BS 1 1.00000D+00 4 2.00000D+00

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian has elements of 1.0
and 2.0 in rows 1 and 4.

Major Step Limit r Default ¼ 2:0

This parameter limits the change in x during a line search. It applies to all nonlinear problems, once a
‘feasible solution’ or ‘feasible subproblem’ has been found.

1. A line search determines a step � over the range 0 < � � �, where � is 1 if there are nonlinear
constraints, or the step to the nearest upper or lower bound on x if all the constraints are linear.
Normally, the first steplength tried as �1 ¼ min 1; �ð Þ.

2. In some cases, such as f xð Þ ¼ aebx or f xð Þ ¼ axb, even a moderate change in the components of x
can lead to floating-point overflow. The parameter r is therefore used to define a limit
��� ¼ r 1þ xk kð Þ= pk k (where p is the search direction), and the first evaluation of f xð Þ is at the

potentially smaller steplength �1 ¼ min 1; ���; �
� �

.

3. Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The Major Step Limit provides an additional safeguard. The
default value r ¼ 2:0 should not affect progress on well behaved problems, but setting
r ¼ 0:1 or 0:01 may be helpful when rapidly varying functions are present. A ‘good’ starting point
may be required. An important application is to the class of nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for r may help locate an optimum
near the starting point.

Minimize Default
Maximize
Feasible Point

The keywords Minimize and Maximize specify the required direction of optimization. It applies to both
linear and nonlinear terms in the objective.

The keyword Feasible Point means ‘Ignore the objective function’ while finding a feasible point for the
linear and nonlinear constraints. It can be used to check that the nonlinear constraints are feasible without
altering the call to E04VHF.

Minor Feasibility Tolerance r Default ¼ 1:0D� 6

E04VHF tries to ensure that all variables eventually satisfy their upper and lower bounds to within this
tolerance, r. This includes slack variables. Hence, general linear constraints should also be satisfied to
within r.

Feasibility with respect to nonlinear constraints is judged by the Major Feasibility Tolerance (not by r).

If the bounds and linear constraints cannot be satisfied to within r, the problem is declared infeasible. Let
sInf be the corresponding sum of infeasibilities. If sInf is quite small, it may be appropriate to raise r
by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

Nonlinear functions will be evaluated only at points that satisfy the bounds and linear constraints. If there
are regions where a function is undefined, every attempt should be made to eliminate these regions from
the problem.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.35

For example, if f xð Þ ¼ ffiffiffiffiffi
x1

p þ log x2ð Þ, it is essential to place lower bounds on both variables. If

r ¼ 1:0D� 6, the bounds x1 � 10�5 and x2 � 10�4 might be appropriate. (The log singularity is more
serious. In general, keep x as far away from singularities as possible.)

If Scale Option � 1, feasibility is defined in terms of the scaled problem (since it is then more likely to be
meaningful).

In reality, E04VHF uses r as a feasibility tolerance for satisfying the bounds on x and s in each QP
subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP subproblem is declared
infeasible. E04VHF is then in elastic mode thereafter (with only the linearized nonlinear constraints
defined to be elastic). See the Elastic Mode options.

Minor Iterations Limit i Default ¼ 500

If the number of minor iterations for the optimality phase of the QP subproblem exceeds i, then all
nonbasic QP variables that have not yet moved are frozen at their current values and the reduced QP is
solved to optimality.

Note that more than i minor iterations may be necessary to solve the reduced QP to optimality. These
extra iterations are necessary to ensure that the terminated point gives a suitable direction for the line
search.

In the major iteration log (see Section 12.2) a ‘t’ at the end of a line indicates that the corresponding QP
was artificially terminated using the limit i.

Note that Minor Iterations Limit defines an independent absolute limit on the total number of minor
iterations (summed over all QP subproblems).

Minor Print Level i Default ¼ 1

This controls the amount of output to the Print File and Summary File during solution of the QP
subproblems. The value of i has the following effect:

0 No minor iteration output except error messages.

� 1 a single line of output at each minor iteration (controlled by Print Frequency and Summary
Frequency.

� 10 Basis factorization statistics generated during the periodic refactorization of the basis (see
Factorization Frequency). Statistics for the first factorization each major iteration are controlled
by the Major Print Level.

New Basis File i1 Default ¼ 0
Backup Basis File i2 Default ¼ 0
Save Frequency i3 Default ¼ 100

New Basis File and Backup Basis File sometimes referred to as basis maps. They contain the most
compact representation of the state of each variable. They are intended for restarting the solution of a
problem at a point that was reached by an earlier run. For non-trivial problems, it is advisable to save
basis maps at the end of a run, in order to restart the run if necessary.

If i1 > 0, a basis map will be saved on the file associated with unit i1 every i3th iteration. The first record
of the file will contain the word PROCEEDING if the run is still in progress. A basis map will also be
saved at the end of a run, with some other word indicating the final solution status.

Using i2 > 0 is intended as a safeguard against losing the results of a long run. Suppose that a New Basis
File is being saved every 100 (Save Frequency) iterations, and that E04VHF is about to save such a basis
at iteration 2000. It is conceivable that the run may be interrupted during the next few milliseconds (in the
middle of the save). In this case the basis file will be corrupted and the run will have been essentially
wasted.

To eliminate this risk, both a New Basis File and a Backup Basis File may be specified. The following
would be suitable for the above example:

Backup Basis File 11
New Basis File 12

E04VHF NAG Fortran Library Manual

E04VHF.36 [NP3657/21]

The current basis will then be saved every 100 iterations, first on the file associated with unit 12 and then
immediately on the file associated with unit 11. If the run is interrupted at iteration 2000 during the save
on the file associated with unit 12, there will still be a usable basis on the file associated with unit 11
(corresponding to iteration 1900).

Note that a new basis will be saved in New Basis File at the end of a run if it terminates normally, but it
will not be saved in Backup Basis File. In the above example, if an optimum solution is found at iteration
2050 (or if the iteration limit is 2050), the final basis on the file associated with unit 12 will correspond to
iteration 2050, but the last basis saved on the file associated with unit 11 will be the one for iteration 2000.

A full description of information recorded in New Basis File and Backup Basis File is given in Gill et al.
(1999).

New Superbasics Limit i Default ¼ 99

This option causes early termination of the QP subproblems if the number of free variables has increased
significantly since the first feasible point. If the number of new superbasics is greater than i the nonbasic
variables that have not yet moved are frozen and the resulting smaller QP is solved to optimality.

In the major iteration log (see Section 12.1), a ‘T’ at the end of a line indicates that the QP was terminated
early in this way.

Old Basis File i Default ¼ 0

If i > 0, the basis maps information will be obtained from this file. A full description of information
recorded in New Basis File and Backup Basis File is given in Gill et al. (1999). The file will usually
have been output previously as a New Basis File or Backup Basis File.

The file will not be acceptable if the number of rows or columns in the problem has been altered.

Partial Price i Default ¼ 1

This parameter is recommended for large problems that have significantly more variables than constraints.
It reduces the work required for each ‘pricing’ operation (when a nonbasic variable is selected to become
superbasic).

When i ¼ 1, all columns of the constraint matrix A �Ið Þ are searched.

Otherwise, A and I are partitioned to give i roughly equal segments Aj, Ij (j ¼ 1 to i). If the previous

pricing search was successful on Aj, Ij, the next search begins on the segments Ajþ1 Ijþ1. (All subscripts

here are modulo i.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the largest such
reduced gradient (of appropriate sign) is selected to become superbasic. If nothing is found, the search
continues on the next segments Ajþ2 Ijþ2, and so on.

Partial Price r (or r=2 or r=3) may be appropriate for time-stage models having r time periods.

Pivot Tolerance r Default ¼ 10� �

During the solution of QP subproblems, the pivot tolerance is used to prevent columns entering the basis if
they would cause the basis to become almost singular.

When x changes to xþ �p for some search direction p, a ‘ratio test’ is used to determine which
component of x reaches an upper or lower bound first. The corresponding element of p is called the pivot
element.

Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than the pivot
tolerance r.

It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Minor Feasibility Tolerance (say t) provides some freedom to maximize the pivot element and thereby
improve numerical stability. Excessively small values of t should therefore not be specified.

To a lesser extent, the Expand Frequency (say f) also provides some freedom to maximize the pivot
element. Excessively large values of f should therefore not be specified.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.37

Print File i Default ¼ 0

If i > 0, the following information is output to a file associated with unit i during the solution of each
problem:

a listing of the optional parameters;

some statistics about the problem;

the amount of storage available for the LU factorization of the basis matrix;

notes about the initial basis resulting from a crash procedure or a Basis File;

the iteration log;

basis factorization statistics;

the exit IFAIL condition and some statistics about the solution obtained;

the printed solution, if requested.

These items are described in Sections 8 and 12. Further brief output may be directed to the Summary
File.

Print Frequency i Default ¼ 100

If i > 0, one line of the iteration log will be printed every ith iteration. A value such as i ¼ 10 is
suggested for those interested only in the final solution.

Proximal Point Method i Default ¼ 1

i ¼ 1 or 2 specifies minimization of x� x0k k1 or 1
2
x� x0k k2

2
when the starting point x0 is changed to

satisfy the linear constraints (where x0 refers to nonlinear variables).

Punch File i1 Default ¼ 0
Insert File i2 Default ¼ 0

The Punch File from a previous run may be used as an Insert File for a later run on the same problem. A
full description of information recorded in Insert File and Punch File is given in Gill et al. (1999).

If i1 > 0, the final solution obtained will be output to the file associated with unit i2. For linear programs,
this format is compatible with various commercial systems.

If i2 > 0, the Insert File containing basis information will be read from unit i2. The file will usually have
been output previously as a Punch File. The file will not be accessed if Old Basis File is specified.

Scale Option i Default ¼ 0
Scale Tolerance r Default ¼ 0:9

Three scale options are available as follows:

i Meaning
0 No scaling. This is recommended if it is known that x and the constraint matrix never have very

large elements (say, larger than 1000).
1 The constraints and variables are scaled by an iterative procedure that attempts to make the matrix

coefficients as close as possible to 1.0 (see Fourer (1982)). This will sometimes improve the
performance of the solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional
scaling is performed that may be helpful if the right-hand side b or the solution x is large. This
takes into account columns of A �Ið Þ that are fixed or have positive lower bounds or negative
upper bounds.

Scale Tolerance affects how many passes might be needed through the constraint matrix. On each pass,
the scaling procedure computes the ratio of the largest and smallest non-zero coefficients in each column:

	j ¼ max
i

aij
�� ��=min

i
aij
�� �� aij 6¼ 0

� �
.

If max	j is less than r times its previous value, another scaling pass is performed to adjust the row and

E04VHF NAG Fortran Library Manual

E04VHF.38 [NP3657/21]

column scales. Raising r from 0.9 to 0.99 (say) usually increases the number of scaling passes through A.
At most 10 passes are made.

Solution File i Default ¼ 0

If i > 0, the final solution will be output to file i (whether optimal or not). All numbers are printed in
1pe16.6 format.

To see more significant digits in the printed solution, it will sometimes be useful to make i refer to Print
File.

Summary File i1 Default ¼ 0
Summary Frequency i2 Default ¼ 100

If i1 > 0, a brief log will be output to the file associated with unit i1, including one line of information
every i2th iteration. In an interactive environment, it is useful to direct this output to the terminal, to allow
a run to be monitored on-line. (If something looks wrong, the run can be manually terminated.) Further
details are given in Section 12.6.

Superbasics Limit i Default ¼ min 500; n1ð Þ
This places a limit on the storage allocated for superbasic variables. Ideally, i should be set slightly larger
than the ‘number of degrees of freedom’ expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom. (The number of
variables lying strictly between their bounds is no more than m, the number of general constraints.) The
default value of i is therefore 1.

For nonlinear problems, the number of degrees of freedom is often called the ‘number of independent
variables’.

Normally, i need not be greater than n1 þ 1, where n1 is the number of nonlinear variables.

For many problems, i may be considerably smaller than n1. This will save storage if n1 is very large.

Suppress Parameters

Normally E04VHF prints the optional file as it is being read, and then prints a complete list of the
available keywords and their final values. The Suppress Parameters option tells E04VHF not to print the
full list.

Timing Level i Default ¼ 0

If i > 0, some timing information will be output to the Print File, if it is > 0.

Unbounded Objective r1 Default ¼ 1:0Dþ 15
Unbounded Step Size r2 Default ¼ 1:0Dþ 20

These parameters are intended to detect unboundedness in nonlinear problems. During a line search, F is
evaluated at points of the form xþ �p, where x and p are fixed and � varies. If Fj j exceeds r1 or �
exceeds r2, iterations are terminated with the exit message

Problem is unbounded (or badly scaled)

If singularities are present, unboundedness in f0 xð Þ may be manifested by a floating-point overflow (during
the evaluation of f0 xþ �pð Þ), before the test against r1 can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.39

Verify Level i Default ¼ 0

This option refers to finite-difference checks on the derivatives computed by the user-provided routines.
Derivatives are checked at the first point that satisfies all bounds and linear constraints.

i Meaning
0 Only a ‘cheap’ test will be performed, requiring two calls to USRFUN.
1 Individual gradients will be checked (with a more reliable test). A key of the form OK or Bad?

indicates whether or not each component appears to be correct.
2 Individual columns of the problem Jacobian will be checked.
3 Options 2 and 1 will both occur (in that order).
�1 Derivative checking is disabled.

Verify Level 3 should be specified whenever a new function routine is being developed.

Violation Limit r Default ¼ 1:0Dþ 6

This keyword defines an absolute limit on the magnitude of the maximum constraint violation, r, after the
line search. On completion of the line search, the new iterate xkþ1 satisfies the condition

vi xkþ1ð Þ � r max 1; vi x0ð Þf g,
where x0 is the point at which the nonlinear constraints are first evaluated and vi xð Þ is the ith nonlinear
constraint violation vi xð Þ ¼ max 0; li � f xð Þ; f xð Þ � uið Þ.
The effect of this violation limit is to restrict the iterates to lie in an expanded feasible region whose size
depends on the magnitude of r. This makes it possible to keep the iterates within a region where the
objective is expected to be well-defined and bounded below. If the obective is bounded below for all
values of the variables, then r may be any large positive value.

12 Description of Monitoring Information

E04VHF produces monitoring information, statistical information and information about the solution.
Section 8.1 contains the final output information sent to Print File. This section contains other output
information.

12.1 Major Iteration Log

This section describes the output to Print File if Major Print Level > 0. One line of information is
output every kth major iteration, where k is Print Frequency.

Label Description

Itns is the cumulative number of minor iterations.

Major is the current major iteration number.

Minors is the number of iterations required by both the feasibility and optimality phases of
the QP subproblem. Generally, Minors will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 10).

Step is the step length � taken along the current search direction p. The variables x have
just been changed to xþ �p. On reasonably well-behaved problems, the unit step
will be taken as the solution is approached.

nCon the number of times subroutine USRFUN has been called to evaluate the nonlinear
problem functions. Evaluations needed for the estimation of the derivatives by
finite differences are not included. nCon is printed as a guide to the amount of work
required for the line search.

E04VHF NAG Fortran Library Manual

E04VHF.40 [NP3657/21]

Feasible is the value of rowerr (see (13)), the maximum component of the scaled nonlinear
constraint residual (see Major Feasibility Tolerance). The solution is regarded as
acceptably feasible if Feasible is less than the Major Feasibility Tolerance. In
this case, the entry is contained in parentheses.

If the constraints are linear, all iterates are feasible and this entry is not printed.

Optimal is the value of maxComp (see (14), the maximum complementary gap (see Major
Optimalility Tolerance). It is an estimate of the degree of nonoptimality of the
reduced costs. Both Feasible and Optimal are small in the neighbourhood of a
solution.

MeritFunction is the value of the augmented Lagrangian merit function (see (8)). This function
will decrease at each iteration unless it was necessary to increase the penalty
parameters (see Section 10.4. As the solution is approached, MeritFunction will
converge to the value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the constraint
violations weighted by the elastic weight.

If the constraints are linear, this item is labelled Objective, the value of the
objective function. It will decrease monotonically to its optimal value.

L+U is the number of non-zeros representing the basis factors L and U on completion of
the QP subproblem.

If nonlinear constraints are present, the basis factorization B ¼ LU is computed at
the start of the first minor iteration. At this stage, LU ¼ lenLþ lenU, where LenL
(see Section 12.3) is the number of sub-diagonal elements in the columns of a lower
triangular matrix and lenU (see Section 12.3) is the number of diagonal and super-
diagonal elements in the rows of an upper-triangular matrix.

As columns of B are replaced during the minor iterations, LU may fluctuate up or
down but, in general, will tend to increase. As the solution is approached and the
minor iterations decrease towards zero, LU will reflect the number of non-zeros in
the LU factors at the start of the QP subproblem.

If the constraints are linear, refactorization is subject only to the Factorization
Frequency, and LU will tend to increase between factorizations.

BSwap is the number of columns of the basis matrix B that were swapped with columns of
S to improve the condition of B. The swaps are determined by an LU factorization

of the rectangular matrix BS ¼ B Sð ÞT with stability being favoured more than
sparsity.

nS is the current number of superbasic variables.

CondHz is an estimate of the condition number of RTR, an estimate of ZTHZ, the reduced
Hessian of the Lagrangian. It is the square of the ratio of the largest and smallest
diagonals of the upper triangular matrix R (which is a lower bound on the condition

number of RTR). CondHz gives a rough indication of whether or not the
optimization procedure is having difficulty. If � is the relative machine precision

being used, the SQP algorithm will make slow progress if CondHz becomes as large

as ��1=2 � 108, and will probably fail to find a better solution if CondHz reaches

��3=4 � 1012.

To guard against high values of CondHz, attention should be given to the scaling of
the variables and the constraints. In some cases it may be necessary to add upper or
lower bounds to certain variables to keep them a reasonable distance from
singularities in the nonlinear functions or their derivatives.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if there are no nonlinear constraints).

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.41

The summary line may include additional code characters that indicate what happened during the course of
the major iteration.

Label Description

c central differences have been used to compute the unknown components of the
objective and constraint gradients. A switch to central differences is made if either
the line search gives a small step, or x is close to being optimal. In some cases, it
may be necessary to re-solve the QP subproblem with the central difference gradient
and Jacobian.

d during the line search it was necessary to decrease the step in order to obtain a
maximum constraint violation conforming to the value of Violation Limit.

l the norm-wise change in the variables was limited by the value of the Major Step
Limit. If this output occurs repeatedly during later iterations, it may be worthwhile
increasing the value of Major Step Limit.

i If E04VHF is not in elastic mode, an ‘i’ signifies that the QP subproblem is
infeasible. This event triggers the start of nonlinear elastic mode, which remains in
effect for all subsequent iterations. Once in elastic mode, the QP subproblems are
associated with the elastic problem (12) (see Section 10.5).

If E04VHF is already in elastic mode, an ‘i’ indicates that the minimizer of the
elastic subproblem does not satisfy the linearized constraints. (In this case, a
feasible point for the usual QP subproblem may or may not exist.)

M an extra evaluation of the problem functions was needed to define an acceptable
positive-definite quasi-Newton update to the Lagrangian Hessian. This modification
is only done when there are nonlinear constraints.

m this is the same as ‘M’ except that it was also necessary to modify the update to
include an augmented Lagrangian term.

n no positive-definite BFGS update could be found. The approximate Hessian is
unchanged from the previous iteration.

R the approximate Hessian has been reset by discarding all but the diagonal elements.
This reset will be forced periodically by the Hessian Frequency and Hessian
Updates keywords. However, it may also be necessary to reset an ill-conditioned
Hessian from time to time.

r the approximate Hessian was reset after ten consecutive major iterations in which no
BFGS update could be made. The diagonals of the approximate Hessian are
retained if at least one update has been done since the last reset. Otherwise, the
approximate Hessian is reset to the identity matrix.

s a self-scaled BFGS update was performed. This update is always used when the
Hessian approximation is diagonal, and hence always follows a Hessian reset.

t the minor iterations were terminated because of the Minor Iterations Limit.

T the minor iterations were terminated because of the New Superbasics Limit.

u the QP subproblem was unbounded.

w a weak solution of the QP subproblem was found.

z the Superbasics Limit was reached.

12.2 Minor Iteration Log

If Minor Print Level > 0, one line of information is output to the Print File every kth minor iteration,
where k is the specified Print Frequency. A heading is printed before the first such line following a basis
factorization. The heading contains the items described below. In this description, a pricing operation is
defined to be the process by which a nonbasic variable is selected to become superbasic (in addition to
those already in the superbasic set). The selected variable is denoted by jq. Variable jq often becomes

E04VHF NAG Fortran Library Manual

E04VHF.42 [NP3657/21]

basic immediately. Otherwise it remains superbasic, unless it reaches its opposite bound and returns to the
nonbasic set.

If Partial Price is in effect, variable jq is selected from App or Ipp, the ppth segments of the constraint

matrix A � I
� �

.

Label Description

Itn the current iteration number.

RedCost or QPmult is the reduced cost (or reduced gradient) of the variable jq selected by the pricing

procedure at the start of the present itearation. Algebraically, dg is dj ¼ gj � �Taj
for j ¼ jq, where gj is the gradient of the current objective function, � is the vector

of dual variables for the QP subproblem, and aj is the jth column of A � I
� �

.

Note that dj is the 1-norm of the reduced-gradient vector at the start of the iteration,
just after the pricing procedure.

LPstep or QPstep is the step length � taken along the current search direction p. The variables x have
just been changed to xþ �p. If a variable is made superbasic during the current
iteration (+SBS > 0), Step will be the step to the nearest bound. During Phase 2,
the step can be greater than one only if the reduced Hessian is not positive-definite.

nInf is the number of infeasibilities after the present iteration. This number will not
increase unless the iterations are in elastic mode.

SumInf If nInf > 0, this is sInf, the sum of infeasibilities after the present iteration. It
usually decreases at each non-zero Step, but if nInf decreases by 2 or more,
SumInf may occasionally increase.

In elastic mode, the heading is changed to Composite Obj, and the value printed
decreases monotonically.

rgNorm is the norm of the reduced-gradient vector at the start of the iteration. (It is the
norm of the vector with elements dj for variables j in the superbasic set.) During

Phase 2 this norm will be approximately zero after a unit step.

(The heading is not printed if the problem is linear.)

LPobjective or QPobjective
the QP objective function after the present iteration. In elastic mode, the heading is
changed to Elastic QPobj. In either case, the value printed decreases
monotonically.

+SBS is the variable jq selected by the pricing operation to be added to the superbasic set.

-SBS is the variable chosen to leave the set of superbasics. It has become basic if the
entry under -B is non-zero; otherwise it has become nonbasic.

-BS is the variable removed from the basis (if any) to become nonbasic.

-B is the variable removed from the basis (if any) to swap with a slack variable made
superbasic by the latest pricing operation. The swap is done to ensure that there are
no superbasic slacks.

Pivot if column aq replaces the rth column of the basis B, Pivot is the rth element of a

vector y satisfying By ¼ aq. Wherever possible, Step is chosen to avoid extremely

small values of Pivot (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot Tolerance to exclude very small
elements of y from consideration during the computation of Step.

Lþ U is the number of non-zeros representing the basis factors L and U . Immediately
after a basis factorization B ¼ LU , this is lenLþ lenU, the number of sub-diagonal
elements in the columns of a lower triangular matrix and the number of diagonal
and super-diagonal elements in the rows of an upper-triangular matrix. Further non-
zeros are added to L when various columns of B are later replaced. As columns of
B are replaced, the matrix U is maintained explicitly (in sparse form). The value of

|

|

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.43

L will steadily increase, whereas the value of U may fluctuate up or down. Thus the
value of Lþ U may fluctuate up or down (in general, it will tend to increase).

ncp is the number of compressions required to recover storage in the data structure for
U . This includes the number of compressions needed during the previous basis
factorization.

nS is the current number of superbasic variables. (The heading is not printed if the
problem is linear.)

CondHz see the major iteration log. (The heading is not printed if the problem is linear.)

12.3 Basis Factorization Statistics

If Major Print Level � 10, the following items are output to the Print File whenever the basis B or the

rectangular matrix BS ¼ B Sð ÞT is factorized before solution of the next QP subproblem.

Note that BS may be factorized at the start of just some of the major iterations. It is immediately followed
by a factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or BS, where PLPT and PUQ
are lower and upper triangular matrices for some permutation matrices P and Q. Stability is ensured as
described under LU Factor Tolerance.

If Minor Print Level � 10, the same items are printed during the QP solution whenever the current B is
factorized.

Label Description

Factorize the number of factorizations since the start of the run.

Demand a code giving the reason for the present factorization.

Code Meaning
0 First LU factorization.
1 The number of updates reached the Factorization Frequency.
2 The non-zeros in the updated factors have increased significantly.
7 Not enough storage to update factors.
10 Row residuals too large (see the description of Check Frequency).
11 Ill-conditioning has caused inconsistent results.

Itn is the current minor iteration number.

Nonlin is the number of nonlinear variables in the current basis B.

Linear is the number of linear variables in B.

Slacks is the number of slack variables in B.

B BR BS or BT factorize
is the type of LU factorization.

B periodic factorization of the basis B.
BR more careful rank-revealing factorization of B using threshold rook

pivoting. This occurs mainly at the start, if the first basis factors seem
singular or ill-conditioned. Followed by a normal B factorize.

BS BS is factorized to choose a well-conditioned B from the current B Sð Þ.
Followed by a normal B factorize.

BT same as BS except the current B is tried first and accepted if it appears to be
not much more ill-conditioned than after the previous BS factorize.

m is the number of rows in B or BS.

n is the number of columns in B or BS. Preceded by ‘=’ or ‘>’ respectively.

Elems is the number of non-zero elements in B or BS.

Amax is the largest non-zero in B or BS.

E04VHF NAG Fortran Library Manual

E04VHF.44 [NP3657/21]

Density is the percentage non-zero density of B or BS.

Merit is the average Markowitz merit count for the elements chosen to be the diagonals of
PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ where c and r are the
number of non-zeros in the column and row containing the element at the time it is
selected to be the next diagonal. Merit is the average of n such quantities. It gives
an indication of how much work was required to preserve sparsity during the
factorization.

lenL is the number of non-zeros in L.

Cmpressns is the number of times the data structure holding the partially factored matrix
needed to be compressed to recover unused storage. Ideally this number should be
zero. If it is more than 3 or 4, the amount of workspace available to E04VHF
should be increased for efficiency.

Incres is the percentage increase in the number of non-zeros in L and U relative to the
number of non-zeros in B or BS.

Utri is the number of triangular rows of B or BS at the top of U .

lenU the number of non-zeros in U .

Ltol is the maximum subdiagonal element allowed in L. This is the specified LU
Factor Tolerance or a smaller value that is currently being used for greater stability.

Umax the maximum non-zero element in U .

Ugrwth is the ratio Umax=Amax, which ideally should not be substantially larger than 10.0 or
100.0. If it is orders of magnitude larger, it may be advisable to reduce the LU
Factor Tolerance to 5.0, 4.0, 3.0 or 2.0, say (but bigger than 1.0).

As long as Lmax is not large (say 10.0 or less), max Amax; Umaxf g=DUmin gives an
estimate of the condition number B. If this is extremely large, the basis is nearly
singular. Slacks are used to replace suspect columns of B and the modified basis is
refactored.

Ltri is the number of triangular columns of B or BS at the left of L.

dense1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax is the actual maximum sub-diagonal element in L (bounded by Ltol).

Akmax is the largest non-zero generated at any stage of the LU factorization. (Values much
larger than Amax indicate instability.)

growth is the ratio Akmax=Amax. Values much larger than 100 (say) indicate instability.

bump is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns of B or BS have been removed.

dense2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.6. (The Markowitz pivot strategy searches fewer columns at
that stage.)

DUmax is the largest diagonal of PUQ.

DUmin is the smallest diagonal of PUQ.

condU the ratio DUmax=DUmin, which estimates the condition number of U (and of B if
Ltol is less than 100, say).

E04 – Minimizing or Maximizing a Function E04VHF

[NP3657/21] E04VHF.45

12.4 Crash Statistics

If Major Print Level � 10, the following items are output to the Print File when START ¼ 0 and no
basis file is loaded. They refer to the number of columns that the Crash procedure selects during selected
passes through A while searching for a triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are rather
far apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., hs jð Þ ¼ 3 for some j � n).
It will be a subset of the columns for which hs jð Þ ¼ 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing 2 non-zeros.

Triangle is the number of triangular columns in the basis with 3 or more non-zeros.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

12.5 The Solution File

At the end of a run, the final solution may be output as a solution file, according to Solution File. Some
header information appears first to identify the problem and the final state of the optimization procedure.
A ROWS section and a COLUMNS section then follow, giving one line of information for each row and
column. The format used is similar to certain commercial systems, though there is no industry standard.

In general, numerical values are output with format f16.5. The maximum record length is 111 characters,
including the first (carriage-control) character.

To reduce clutter, a full stop (.) is printed for any numerical value that is exactly zero. The values �1 are

also printed specially as 1:0 and �1:0. Infinite bounds (�1020 or larger) are printed as None.

A solution file is intended to be read from disk by a self-contained program that extracts and saves certain
values as required for possible further computation. Typically, the first 14 records would be ignored. Each
subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts with a 1 and
is otherwise blank. If this and the next 4 records are skipped, the COLUMNS section can then be read
under the same format. (There should be no need for backspace statements.)

A full description of the Row section and the Column section is given in Section 8.1.

12.6 The Summary File

If Summary File > 0, the following information is output to the unit number associated with Summary
File. (it is a brief summary of the output directed to Print File):

the optional parameters supplied via the option setting routines, if any;

the basis file loaded, if any;

a brief major iteration log (see Section 12.1);

a brief minor iteration log (see Section 12.2);

the exit condition, IFAIL;

a summary of the final iterate.

E04VHF NAG Fortran Library Manual

E04VHF.46 (last) [NP3657/21]

	E04VHF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	START
	NF
	N
	NXNAME
	NFNAME
	OBJADD
	OBJROW
	PROB
	USRFUN
	STATUS
	N
	X
	NEEDF
	NF
	F
	NEEDG
	LENG
	G
	CUSER
	IUSER
	RUSER

	IAFUN
	JAVAR
	A
	LENA
	NEA
	IGFUN
	JGVAR
	LENG
	NEG
	XLOW
	XUPP
	XNAMES
	FLOW
	FUPP
	FNAMES
	X
	XSTATE
	XMUL
	F
	FSTATE
	FMUL
	NS
	NINF
	SINF
	CW
	LENCW
	IW
	LENIW
	RW
	LENRW
	CUSER
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	 = 1
	 = 2
	 = 3
	 = 4
	 = 5
	 = 6
	 = 7
	 = 8
	 = 9
	 = 10
	 = 11
	 = 12
	 = 13
	 = 14

	7 Accuracy
	8 Further Comments
	8.1 The Final Output

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Algorithmic Details
	10.1 Constraints and Slack Variables
	10.2 Major Iterations
	10.3 Minor Iterations
	10.4 The Merit Function
	10.5 Treatment of Constraint Infeasibilities

	11 Optional Parameters
	11.1 Optional parameter checklist and default values
	11.2 Description of the optional parameters
	centraldifferenceinterval
	checkfrequency
	crashoption
	crashtolerance
	defaults
	derivativeoption
	derivativelinesearch
	nonderivativelinesearch
	differenceinterval
	dumpfile
	loadfile
	elasticmode
	elasticweight
	expandfrequency
	factorizationfrequency
	feasibilitytolerance
	functionprecision
	hessianfullmemory
	hessianlimitedmemory
	hessianfrequency
	hessianupdates
	infiniteboundsize
	linesearchtolerance
	list
	nolist
	LUfactortolerance
	LUupdatetolerance
	LUpartialpivoting
	LUrookpivoting
	LUcompletepivoting
	LUdensitytolerance
	LUsingularitytolerance
	majorfeasibilitytolerance
	majoroptimalitytolerance
	majoriterationslimit
	majorprintlevel
	majorsteplimit
	minimize
	maximize
	feasiblepoint
	minorfeasibilitytolerance
	minoriterationslimit
	minorprintlevel
	newbasisfile
	backupbasisfile
	savefrequency
	newsuperbasicslimit
	oldbasisfile
	partialprice
	pivottolerance
	printfile
	printfrequency
	proximalpointmethod
	punchfile
	insertfile
	scaleoption
	scaletolerance
	solutionfile
	summaryfile
	summaryfrequency
	superbasicslimit
	suppressparams
	timinglevel
	unboundedobjective
	unboundedstepsize
	verifylevel
	violationlimit

	12 Description of Monitoring Information
	12.1 Major Iteration Log
	12.2 Minor Iteration Log
	12.3 Basis Factorization Statistics
	12.4 Crash Statistics
	12.5 The Solution File
	12.6 The Summary File

	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

