
NAG Fortran Library Routine Document

E04UFF=E04UFA

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the details of

the algorithm. If you wish to use default settings for all of the optional parameters, you need only read

Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and Section 12 for a

detailed description of the algorithm, the specification of the optional parameters and a description of the

monitoring information produced by the routine.

1 Purpose

E04UFF=E04UFA is designed to minimize an arbitrary smooth function subject to constraints (which may
include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a
sequential quadratic programming (SQP) method. As many first derivatives as possible should be supplied
by the user; any unspecified derivatives are approximated by finite differences. It is not intended for large
sparse problems.

E04UFF=E04UFA may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

E04UFF=E04UFA uses reverse communication for evaluating the objective function, the nonlinear
constraint functions and any of their derivatives.

E04UFA is a version of E04UFF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5 below). The initialisation routine E04WBF must have been
called prior to calling E04UFA.

2 Specifications

2.1 Specification for E04UFF

SUBROUTINE E04UFF(IREVCM, N, NCLIN, NCNLN, LDA, LDCJ, LDR, A, BL, BU,
1 ITER, ISTATE, C, CJAC, CLAMDA, OBJF, OBJGRD, R, X,
2 NEEDC, IWORK, LIWORK, WORK, LWORK, IFAIL)

INTEGER IREVCM, N, NCLIN, NCNLN, LDA, LDCJ, LDR, ITER,
1 ISTATE(N+NCLIN+NCNLN), NEEDC(*), IWORK(LIWORK),
2 LIWORK, LWORK, IFAIL
real A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN), C(*),

1 CJAC(LDCJ,*), CLAMDA(N+NCLIN+NCNLN), OBJF, OBJGRD(N),
2 R(LDR,N), X(N), WORK(LWORK)

2.2 Specification for E04UFA

SUBROUTINE E04UFA(IREVCM, N, NCLIN, NCNLN, LDA, LDCJ, LDR, A, BL, BU,
1 ITER, ISTATE, C, CJAC, CLAMDA, OBJF, OBJGRD, R, X,
2 NEEDC, IWORK, LIWORK, WORK, LWORK, CWSAV, LWSAV,
3 IWSAV, RWSAV, IFAIL)

INTEGER IREVCM, N, NCLIN, NCNLN, LDA, LDCJ, LDR, ITER,
1 ISTATE(N+NCLIN+NCNLN), NEEDC(*), IWORK(LIWORK),
2 LIWORK, LWORK, IWSAV(610), IFAIL
real A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN), C(*),

1 CJAC(LDCJ,*), CLAMDA(N+NCLIN+NCNLN), OBJF, OBJGRD(N),
2 R(LDR,N), X(N), WORK(LWORK), RWSAV(475)
LOGICAL LWSAV(120)
CHARACTER*80 CWSAV(5)
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Before calling E04UFA, or either of the option setting routines E04UDA or E04UEA, routine E04WBF
must be called. The specification for E04WBF is:

SUBROUTINE E04WBF(RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
1 RWSAV, LRWSAV, IFAIL)

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV, IFAIL
real RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER*6 RNAME
CHARACTER*80 CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ ’E04UFA’. LCWSAV, LLWSAV, LIWSAV and LRWSAV, the
declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 5

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04WBF and E04UFA, E04UDA or E04UEA.

3 Description

E04UFF=E04UFA is designed to solve the nonlinear programming problem – the minimization of a
smooth nonlinear function subject to a set of constraints on the variables. The problem is assumed to be
stated in the following form:

Minimize
x2Rn

F ðxÞ subject to l �
x

ALx
cðxÞ

0
@

1
A � u; ð1Þ

where F ðxÞ (the objective function) is a nonlinear function, AL is an nL by n constant matrix, and cðxÞ is
an nN element vector of nonlinear constraint functions. (The matrix AL and the vector cðxÞ may be
empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least twice-
continuously differentiable. (The method of E04UFF=E04UFA will usually solve (1) if there are only
isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear constraints,
we prefer to distinguish between them for reasons of computational efficiency. For the same reason, the
linear constraints should not be included in the definition of the nonlinear constraints. Upper and lower
bounds are specified for all the variables and for all the constraints. An equality constraint can be specified
by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to special
values that will be treated as �1 or þ1. (See the description of the optional parameter Infinite Bound
Size in Section 11.2.)

If there are no nonlinear constraints in (1) and F is linear or quadratic then it will generally be more
efficient to use one of E04MFF=E04MFA, E04NCF=E04NCA or E04NFF=E04NFA, or
E04NKF=E04NKA if the problem is large and sparse. If the problem is large and sparse and does
have nonlinear constraints, E04UGF=E04UGA should be used, since E04UFF=E04UFA treats all matrices
as dense.

E04UFF=E04UFA uses reverse communication for evaluating F ðxÞ, cðxÞ and as many of their first partial
derivatives as possible; any remaining derivatives are approximated by finite differences. See Section 11.2
for a discussion of the optional parameter Derivative Level.

On initial entry, the user must supply an initial estimate of the solution to (1).

On intermediate exits, the calling program must compute appropriate values for the objective function, the
nonlinear constraints or their derivatives, as specified by the parameter IREVCM, and then re-enter the
routine. Just before an intermediate exit when derivatives are required, each element of the current array of
derivatives OBJGRD or CJAC is initialised to a special value. On re-entry to the routine, any element that
retains this value is estimated by finite differences.
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For maximum reliability, it is preferable for the user to provide all partial derivatives (see Chapter 8 of Gill
et al. (1981), for a detailed discussion). If they cannot all be provided, it is advisable to provide as many
as possible. While developing code to evaluate the objective function and the constraints, the optional
parameter Verify (see Section 11.2) should be used to check the calculation of any known derivatives.

The method used by E04UFF=E04UFA is described in detail in Section 10.

E04UCF=E04UCA is an alternative routine which uses exactly the same method, but with forward
communication: that is, the objective and constraint functions are evaluated by subroutines, supplied as
parameters to the routine.
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5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-
entries, and a final exit, as indicated by the parameter IREVCM . Between intermediate exits and re-entries,
all parameters must remain unchanged except those specified by the value of IREVCM .

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM must be set to 0.

On intermediate exit: IREVCM specifies what values the calling program must assign to parameters
of E04UFF=E04UFA before re-entering the routine:

if IREVCM ¼ 1, set OBJF to the value of the objective function F ðxÞ;

if IREVCM ¼ 2, set OBJGRDð< jÞ to the value
@F

@xj

if available, for j ¼ 1; 2; . . . ; n;

if IREVCM ¼ 3, set OBJF and OBJGRDðjÞ as for IREVCM ¼ 1 and IREVCM ¼ 2;
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if IREVCM ¼ 4, set CðiÞ to the value of the constraint function ciðxÞ, for each i such that
NEEDCðiÞ > 0;

if IREVCM ¼ 5, set CJACði; jÞ to the value
@ci
@xj

if available, for each i such that

NEEDCðiÞ > 0 and j ¼ 1; 2; . . . ; n;

if IREVCM ¼ 6, set CðiÞ and CJACði; jÞ as for IREVCM ¼ 4 and IREVCM ¼ 5;

On intermediate re-entry: IREVCM must remain unchanged, unless the user wishes to terminate
the solution to the current problem. In this case IREVCM may be set to a negative value and then
E04UFF=E04UFA will take a final exit with IFAIL set to this value of IREVCM.

On final exit: IREVCM ¼ 0.

Constraint: IREVCM � 6.

2: N – INTEGER Input

On initial entry: n, the number of variables.

Constraint: N > 0.

3: NCLIN – INTEGER Input

On initial entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

4: NCNLN – INTEGER Input

On initial entry: nN, the number of nonlinear constraints.

Constraint: NCNLN � 0.

5: LDA – INTEGER Input

On initial entry: the first dimension of the array A as declared in the (sub)program from which
E04UFF=E04UFA is called.

Constraint: LDA � maxð1;NCLINÞ.

6: LDCJ – INTEGER Input

On initial entry: the first dimension of the array CJAC as declared in the (sub)program from which
E04UFF=E04UFA is called.

Constraint: LDCJ � maxð1;NCNLNÞ.

7: LDR – INTEGER Input

On initial entry: the first dimension of the array R as declared in the (sub)program from which
E04UFF=E04UFA is called.

Constraint: LDR � N.

8: A(LDA,*) – real array Input

Note: the second dimension of the array A must be at least N when NCLIN > 0, and at least 1
otherwise.

On initial entry: the ith row of the array A must contain the ith row of the matrix AL of general
linear constraints in (1). That is, the ith row contains the coefficients of the ith general linear
constraint, for i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0 then the array A is not referenced.
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9: BL(N+NCLIN+NCNLN) – real array Input
10: BU(N+NCLIN+NCNLN) – real array Input

On initial entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints
in the following order. The first n elements of each array must contain the bounds on the variables,
the next nL elements the bounds for the general linear constraints (if any) and the next nN elements
the bounds for the general nonlinear constraints (if any). To specify a non-existent lower bound
(i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a non-existent upper bound (i.e., uj ¼ þ1),

set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be changed by the optional
parameter Infinite Bound Size (see Section 11.2). To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where j�j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN,
j�j < bigbnd when BLðjÞ ¼ BUðjÞ ¼ �.

11: ITER – INTEGER Output

On final exit: the number of major iterations performed.

12: ISTATE(N+NCLIN+NCNLN) – INTEGER array Input/Output

On initial entry: ISTATE need not be set if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), the elements of ISTATE
corresponding to the bounds and linear constraints define the initial working set for the procedure
that finds a feasible point for the linear constraints and bounds. The active set at the conclusion of
this procedure and the elements of ISTATE corresponding to nonlinear constraints then define the
initial working set for the first QP subproblem. More precisely, the first n elements of ISTATE refer
to the upper and lower bounds on the variables, the next nL elements refer to the upper and lower
bounds on ALx, and the next nN elements refer to the upper and lower bounds on cðxÞ. Possible
values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning

0 The corresponding constraint is not in the initial QP working set.
1 This inequality constraint should be in the working set at its lower bound.
2 This inequality constraint should be in the working set at its upper bound.
3 This equality constraint should be in the initial working set. This value must not be

specified unless BLðjÞ ¼ BUðjÞ.
The values �2, �1 and 4 are also acceptable but will be modified by the routine. If
E04UFF=E04UFA has been called previously with the same values of N, NCLIN and NCNLN,
ISTATE already contains satisfactory information. (See also the description of the optional
parameter Warm Start in Section 11.2.) The routine also adjusts (if necessary) the values supplied
in X to be consistent with ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN.

On final exit: the status of the constraints in the QP working set at the point returned in X. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 This constraint violates its lower bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and Nonlinear
Feasibility Tolerance in Section 11.2). This value can occur only when no feasible
point can be found for a QP subproblem.

�1 This constraint violates its upper bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and Nonlinear
Feasibility Tolerance in Section 11.2). This value can occur only when no feasible
point can be found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.
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1 This inequality constraint is included in the QP working set at its lower bound.
2 This inequality constraint is included in the QP working set at its upper bound.
3 This constraint is included in the QP working set as an equality. This value of

ISTATE can occur only when BLðjÞ ¼ BUðjÞ.

13: C(*) – real array Input/Output

Note: the first dimension of the array C must be at least maxð1;NCNLNÞ.
On initial entry: C need not be set.

On intermediate re-entry: if IREVCM ¼ 4 or 6 and NEEDCðiÞ > 0, CðiÞ must contain the value of
the ith constraint at x. The remaining elements of C, corresponding to the non-positive elements of
NEEDC, are ignored.

On final exit: if NCNLN > 0, CðiÞ contains the value of the ith nonlinear constraint function ci at
the final iterate, for i ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0 then the array C is not referenced.

14: CJAC(LDCJ,*) – real array Input/Output

Note: the second dimension of the array CJAC must be at least N when NCNLN > 0, and at least 1
otherwise.

On initial entry: in general, CJAC need not be initialised before the call to E04UFF=E04UFA.
However, if the optional parameter Derivative Level ¼ 2 or 3 (default value ¼ 3; see Section 11.2),
the user may optionally set the constant elements of CJAC. Such constant elements need not be re-
assigned on subsequent intermediate exits.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3), any constant
elements may be assigned to CJAC one time only at the start of the optimization. An element of
CJAC that is not subsequently assigned during an intermediate exit will retain its initial value
throughout. Constant elements may be loaded into CJAC either before the call to
E04UFF=E04UFA or during the first intermediate exit. The ability to preload constants is useful
when many Jacobian elements are identically zero, in which case CJAC may be initialised to zero
and non-zero elements may be reset during intermediate exits.

On intermediate re-entry: if IREVCM ¼ 5 or 6 and NEEDCðiÞ > 0, the ith row of CJAC must
contain the available elements of the vector rci given by

rci ¼
@ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable, evaluated at

the point x. The remaining rows of CJAC, corresponding to non-positive elements of NEEDC, are
ignored.

Note that constant non-zero elements do affect the values of the constraints. Thus, if CJACði; jÞ is
set to a constant value, it need not be reset during subsequent intermediate exits, but the value
CJACði; jÞ � XðjÞ must nonetheless be added to CðiÞ. For example, if CJACð1; 1Þ ¼ 2 and
CJACð1; 2Þ ¼ �5, then the term 2 � Xð1Þ � 5 � Xð2Þ must be included in the definition of C(1).

It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJAC are not
treated as constant; they are estimated by finite differences, at non-trivial expense. If the user does
not supply a value for the optional parameter Difference Interval (the default; see Section 11.2), an
interval for each element of x is computed automatically at the start of the optimization. The
automatic procedure can usually identify constant elements of CJAC, which are then computed once
only by finite differences.

See also the optional parameter Verify in Section 11.2.
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On final exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint
function with respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN; j ¼ 1; 2; . . . ;N.

If NCNLN ¼ 0 then the array CJAC is not referenced.

15: CLAMDA(N+NCLIN+NCNLN) – real array Input/Output

On initial entry: CLAMDA need not be set if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), CLAMDAðjÞ must contain a
multiplier estimate for each nonlinear constraint with a sign that matches the status of the constraint
specified by the ISTATE array (as above), for j ¼ Nþ NCLINþ 1, Nþ NCLINþ 2, . . .,
Nþ NCLINþ NCNLN. The remaining elements need not be set. Note that if the jth constraint
is defined as ‘inactive’ by the initial value of the ISTATE array (i.e. ISTATEðjÞ ¼ 0), CLAMDAðjÞ
should be zero; if the jth constraint is an inequality active at its lower bound (i.e. ISTATEðjÞ ¼ 1),
CLAMDAðjÞ should be non-negative; if the jth constraint is an inequality active at its upper bound
(i.e. ISTATEðjÞ ¼ 2), CLAMDAðjÞ should be non-positive. If necessary, the routine will modify
CLAMDA to match these rules.

On final exit: the values of the QP multipliers from the last QP subproblem. CLAMDAðjÞ should
be non-negative if ISTATEðjÞ ¼ 1 and non-positive if ISTATEðjÞ ¼ 2.

16: OBJF – real Input/Output

On initial entry: OBJF need not be set.

On intermediate re-entry: if IREVCM ¼ 1 or 3, OBJF must be set to the value of the objective
function at x.

On final exit: the value of the objective function at the final iterate.

17: OBJGRD(N) – real array Input/Output

On initial entry: OBJGRD need not be set.

On intermediate re-entry: if IREVCM ¼ 2 or 3, OBJGRD must contain the available elements of
the gradient evaluated at x.

See also the optional parameter Verify in Section 11.2.

On final exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

18: R(LDR,N) – real array Input/Output

On initial entry: R need not be initialised if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), R must contain the upper triangular
Cholesky factor R of the initial approximation of the Hessian of the Lagrangian function, with the
variables in the natural order. Elements not in the upper triangular part of R are assumed to be zero
and need not be assigned.

On final exit: if Hessian ¼ No (the default; see Section 11.2), R contains the upper triangular

Cholesky factor R of QT ~HHQ, an estimate of the transformed and re-ordered Hessian of the
Lagrangian at x (see (6) in Section 10.1). If Hessian ¼ Yes, R contains the upper triangular
Cholesky factor R of H, the approximate (untransformed) Hessian of the Lagrangian, with the
variables in the natural order.

19: X(N) – real array Input/Output

On initial entry: an initial estimate of the solution.

On intermediate exit: the point x at which the objective function, constraint functions or their
derivatives are to be evaluated.

On final exit: the final estimate of the solution.
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20: NEEDC(*) – INTEGER array Output

Note: the first dimension of the array NEEDC must be at least maxð1;NCNLNÞ.
On intermediate exit: if IREVCM � 4, NEEDC specifies the indices of the elements of C and/or
CJAC that must be assigned. If NEEDCðiÞ > 0, then the ith element of C and/or the available
elements of the ith row of CJAC must be evaluated at x.

21: IWORK(LIWORK) – INTEGER array Workspace
22: LIWORK – INTEGER Input

On initial entry: the first dimension of the array IWORK as declared in the (sub)program from
which E04UFF=E04UFA is called.

Constraint: LIWORK � 3� Nþ NCLINþ 2� NCNLN.

23: WORK(LWORK) – real array Workspace
24: LWORK – INTEGER Input

On initial entry: the first dimension of the array WORK as declared in the (sub)program from which
E04UFF=E04UFA is called.

Constraints:

if NCNLN ¼ 0 and NCLIN ¼ 0 then LWORK � 21� Nþ 2;

if NCNLN ¼ 0 and NCLIN > 0 then LWORK � 2� N2 þ 21� Nþ 11� NCLINþ 2;

if NCNLN > 0 and NCLIN � 0 then LWORK � 2� N2 þ N� NCLINþ 2� N�
NCNLNþ 21� Nþ 11� NCLINþ 22� NCNLNþ 1.

The amounts of workspace provided and required may be (by default for E04UFF) output on the
current advisory message unit (as defined by X04ABF). As an alternative to computing LIWORK
and LWORK from the formulae given above, the user may prefer to obtain appropriate values from
the output of a preliminary run with LIWORK and LWORK set to 1. (E04UFF=E04UFA will then
terminate with IFAIL ¼ 9.)

25: IFAIL – INTEGER Input/Output

Note: for E04UFA, IFAIL does not occur in this position in the parameter list. See the additional

parameters described below.

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04UFF=E04UFA returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies
the first-order Kuhn–Tucker conditions (see Section 10.1) to the accuracy requested by the optional

parameter Optimality Tolerance This has default value ¼ �R
0:8, where �R is the value of the

optional parameter Function Precision (default value ¼ �0:9, where � is the machine precision; see
Section 11.2). That is IFAIL ¼ 0 when the projected gradient and active constraint residuals are
negligible at x.

The user should check whether the following four conditions are satisfied:

(i) the final value of Norm Gz (see Section 8.1) is significantly less than that at the starting point;

(ii) during the final major iterations, the values of Step and Mnr (see Section 8.1) are both one;

(iii) the last few values of both Norm Gz and Violtn (see Section 8.1) become small at a fast linear
rate; and
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(iv) Cond Hz (see Section 8.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

Note: the following are additional parameters for specific use with E04UFA. Users of E04UFF therefore need

not read the remainder of this section.

25: CWSAV(5) – CHARACTER*80 array Workspace
26: LWSAV(120) – LOGICAL array Workspace
27: IWSAV(610) – INTEGER array Workspace
28: RWSAV(475) – real array Workspace

The arrays LWSAV, IWSAV, RWSAV and CWSAV must not be altered between calls to any of the
routines E04WBF, E04UFA, E04UDA or E04UEA.

29: IFAIL – INTEGER Input/Output

Note: see the parameter description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04UFF=E04UFA because the user set
IREVCM < 0 during an intermediate exit. The value of IFAIL will be the same as the user’s setting
of IREVCM.

IFAIL ¼ 1

The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 10.1) to the accuracy
requested, but the sequence of iterates has not yet converged. E04UFF=E04UFA was terminated
because no further improvement could be made in the merit function (see Section 8.1).

This value of IFAIL may occur in several circumstances. The most common situation is that the
user asks for a solution with accuracy that is not attainable with the given precision of the problem

(as specified by the optional parameter Function Precision (default value ¼ �0:9, where � is the
machine precision; see Section 11.2)). This condition will also occur if, by chance, an iterate is an
‘exact’ Kuhn–Tucker point, but the change in the variables was significant at the previous iteration.
(This situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 5 for IFAIL ¼ 0 are satisfied, x is likely to be a solution of
(1) even if IFAIL ¼ 1.

IFAIL ¼ 2

E04UFF=E04UFA has terminated without finding a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional

parameter Linear Feasibility Tolerance (default value ¼
ffiffi
�

p
, where � is the machine precision; see

Section 11.2), or no feasible point could be found in the number of iterations specified by the
optional parameter Minor Iteration Limit (default value ¼ maxð50; 3ðnþ nL þ nNÞÞ; see
Section 11.2). The user should check that there are no constraint redundancies. If the data for
the constraints are accurate only to an absolute precision �, the user should ensure that the value of
the optional parameter Linear Feasibility Tolerance is greater than �. For example, if all elements
of AL are of order unity and are accurate to only three decimal places, Linear Feasibility

Tolerance should be at least 10�3.
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IFAIL ¼ 3

No feasible point could be found for the nonlinear constraints. The problem may have no feasible
solution. This means that there has been a sequence of QP subproblems for which no feasible point
could be found (indicated by I at the end of each line of intermediate printout produced by the
major iterations; see Section 8.1). This behaviour will occur if there is no feasible point for the
nonlinear constraints. (However, there is no general test that can determine whether a feasible point
exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very first
major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when earlier
subproblems have been feasible, small constraint inconsistencies may be present. The user should
check the validity of constraints with negative values of ISTATE. If the user is convinced that a
feasible point does exist, E04UFF=E04UFA should be restarted at a different starting point.

IFAIL ¼ 4

The limiting number of iterations (as determined by the optional parameter Major Iteration Limit
(default value ¼ maxð50; 3ðnþ nLÞ þ 10nNÞ; see Section 11.2)) has been reached.

If the algorithm appears to be making satisfactory progress, then Major Iteration Limit may be too
small. If so, either increase its value and rerun E04UFF=E04UFA or, alternatively, rerun
E04UFF=E04UFA using the Warm Start option (see Section 11.2). If the algorithm seems to be
making little or no progress however, then the user should check for incorrect gradients or ill-
conditioning as described below under IFAIL ¼ 6.

Note that ill-conditioning in the working set is sometimes resolved automatically by the algorithm,
in which case performing additional iterations may be helpful. However, ill-conditioning in the
Hessian approximation tends to persist once it has begun, so that allowing additional iterations
without altering R is usually inadvisable. If the quasi-Newton update of the Hessian approximation
was reset during the latter major iterations (i.e., an R occurs at the end of each line of intermediate
printout; see Section 8.1), it may be worthwhile to try a Warm Start at the final point as suggested
above.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

x does not satisfy the first-order Kuhn–Tucker conditions (see Section 10.1), and no improved point
for the merit function (see Section 8.1) could be found during the final line search.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of

the optional parameter Optimality Tolerance (default value ¼ �R
0:8, where �R is the value of the

optional parameter Function Precision (default value ¼ �0:9, where � is the machine precision; see
Section 11.2)) is too small. In this case the user should apply the four tests described above under
IFAIL ¼ 0 to determine whether or not the final solution is acceptable (see Gill et al. (1981), for a
discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and
E04UFF=E04UFA has failed completely to move from the initial point, then values set by the
calling program for the objective or constraint functions or their derivatives during intermediate exits
may be incorrect. The user should refer to comments below under IFAIL ¼ 7 and check the
gradients using the optional parameter Verify (default value ¼ 0; see Section 11.2). Unfortunately,
there may be small errors in the objective and constraint gradients that cannot be detected by the
verification process. Finite difference approximations to first derivatives are catastrophically
affected by even small inaccuracies. An indication of this situation is a dramatic alteration in the
iterates if the finite difference interval is altered. One might also suspect this type of error if a
switch is made to central differences even when Norm Gz and Violtn (see Section 8.1) are large.

Another possibility is that the search direction has become inaccurate because of ill-conditioning in
the Hessian approximation or the matrix of constraints in the working set; either form of ill-
conditioning tends to be reflected in large values of Mnr (the number of iterations required to solve
each QP subproblem; see Section 8.1).
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If the condition estimate of the projected Hessian (Cond Hz; see Section 8.1) is extremely large, it
may be worthwhile rerunning E04UFF=E04UFA from the final point with the Warm Start option
(see Section 11.2). In this situation, ISTATE and CLAMDA should be left unaltered and R should
be reset to the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is extremely large; see
Section 12), it may be helpful to run E04UFF=E04UFA with a relaxed value of the Feasibility

Tolerance (default value ¼
ffiffi
�

p
, where � is the machine precision; see Section 11.2). (Constraint

dependencies are often indicated by wide variations in size in the diagonal elements of the matrix T ,
whose diagonals will be printed if Major Print Level � 30 (default value ¼ 10; see Section 11.2).)

IFAIL ¼ 7

The user-provided derivatives of the objective function and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This value of IFAIL will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. The user should refer to the printed output to determine
which elements are suspected to be in error.

As a first-step, the user should check that the code for the objective and constraint values is correct
– for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is remarkable
how often the values x ¼ 0 or x ¼ 1 are used in such a test, and how often the special properties of
these numbers make the test meaningless.

Special care should be used in the test if computation of the objective function involves subsidiary
data communicated in COMMON storage. Although the first evaluation of the function may be
correct, subsequent calculations may be in error because some of the subsidiary data has
accidentally been overwritten.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed prior to each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the function;
since some compilers do not convert such constants to double precision, half the correct figures may
be lost by such a seemingly trivial error.

IFAIL ¼ 8

Not used by this routine.

IFAIL ¼ 9

An input parameter is invalid.

IFAIL ¼ Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning in
the working set when adding the jth constraint, it may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter Linear Feasibility Tolerance

(default value ¼
ffiffi
�

p
, where � is the machine precision; see Section 11.2) and/or the optional

parameter Nonlinear Feasibility Tolerance (default value ¼ �0:33 or
ffiffi
�

p
; see Section 11.2) and

rerunning the program. If the message recurs even after this change then the offending linearly
dependent constraint (with index ‘j’) must be removed from the problem. If overflow occurs in one
of the user-supplied routines (e.g., if the nonlinear functions involve exponentials or singularities), it
may help to specify tighter bounds for some of the variables (i.e., reduce the gap between the
appropriate lj and uj).
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7 Accuracy

If IFAIL ¼ 0 on final exit then the vector returned in the array X is an estimate of the solution to an

accuracy of approximately Optimality Tolerance (default value ¼ �0:8, where � is the machine precision;
see Section 11.2).

8 Further Comments

8.1 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04UFF=E04UFA. The
intermediate printout is a subset of the monitoring information produced by the routine at every iteration
(see Section 12). The level of printed output can be controlled by the user (see the description of the
optional parameter Major Print Level in Section 11.2). Note that the intermediate printout and final
printout are produced only if Major Print Level � 10 (the default for E04UFF, by default no output is
produced by E04UFA).

The following line of summary output (< 80 characters) is produced at every major iteration. In all cases,
the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10).

Note that Mnr may be greater than the Minor Iteration Limit
(default value ¼ maxð50; 3ðnþ nL þ nNÞÞ; see Section 11.2) if some iterations
are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Merit Function is the value of the augmented Lagrangian merit function (12) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase the
penalty parameters (see Section 10.3). As the solution is approached, Merit
Function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the
current output line) then the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values will
decrease monotonically until either a feasible subproblem is obtained or
E04UFF=E04UFA terminates with IFAIL ¼ 3 (no feasible point could be found
for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F ðxÞ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is kZTgFRk, the Euclidean norm of the projected gradient (see Section 10.2). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation

HZ (HZ ¼ ZTHFRZ ¼ RT
ZRZ ; see (6) and (11) of the document for

E04UCF=E04UCA). The larger this number, the more difficult the problem.
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M is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive-definite (see Section 10.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified objective
and constraint gradients. If the value of Step is zero then the switch to central
differences was made because no lower point could be found in the line search. (In
this case, the QP subproblem is re-solved with the central difference gradient and
Jacobian.) If the value of Step is non-zero then central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see
Section 10.1 of the document for E04UCF=E04UCA).

L is printed if the line search has produced a relative change in x greater than the
value defined by the optional parameter Step Limit (default value ¼ 2:0; see
Section 11.2). If this output occurs frequently during later iterations of the run,
Step Limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly conditioned
then the approximate Hessian is refactorized using column interchanges. If
necessary, R is modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more

than the Feasibility Tolerance (default value ¼
ffiffi
�

p
, where � is the machine

precision; see Section 11.2), State will be ++ or respectively.

A key is sometimes printed before State to give some additional information about
the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound then there would be no
change to the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.
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Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ replaced by BLðnþ jÞ and BUðnþ jÞ
respectively and with the following changes in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

N Con gives the name (N) and index (j� nL), for j ¼ nL þ 1; nL þ 2; . . . ; nL þ nN of the
nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9 Example

This is based on Problem 71 in and involves the minimization of the nonlinear function

F ðxÞ ¼ x1x4ðx1 þ x2 þ x3Þ þ x3

subject to the bounds

1 � x1 � 5

1 � x2 � 5

1 � x3 � 5

1 � x4 � 5

to the general linear constraint

x1 þ x2 þ x3 þ x4 � 20;

and to the nonlinear constraints

x21 þ x22 þ x23 þ x24 � 40;
x1x2x3x4 � 25:

The initial point, which is infeasible, is

x0 ¼ ð1; 5; 5; 1ÞT ;
and F ðx0Þ ¼ 16.

The optimal solution (to five figures) is

x� ¼ ð1:0; 4:7430; 3:8211; 1:3794ÞT ;

and F ðx�Þ ¼ 17:014. One bound constraint and both nonlinear constraints are active at the solution.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

Note: the following program illustrates the use of E04UFF. An equivalent program illustrating the use of

E04UFA is available with the supplied Library and is also available from the NAG web site.

* E04UFF Example Program Text
* Mark 18 Release. NAG Copyright 1997.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NCLMAX, NCNMAX
PARAMETER (NMAX=10,NCLMAX=10,NCNMAX=10)
INTEGER LDA, LDCJ, LDR
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PARAMETER (LDA=NCLMAX,LDCJ=NCNMAX,LDR=NMAX)
INTEGER LIWORK, LWORK
PARAMETER (LIWORK=100,LWORK=1000)
real ZERO, ONE, TWO
PARAMETER (ZERO=0.0e+0,ONE=1.0e+0,TWO=2.0e+0)

* .. Local Scalars ..
real OBJF
INTEGER I, IFAIL, IREVCM, ITER, J, N, NCLIN, NCNLN

* .. Local Arrays ..
real A(LDA,NMAX), BL(NMAX+NCLMAX+NCNMAX),

+ BU(NMAX+NCLMAX+NCNMAX), C(NCNMAX),
+ CJAC(LDCJ,NMAX), CLAMDA(NMAX+NCLMAX+NCNMAX),
+ OBJGRD(NMAX), R(LDR,NMAX), WORK(LWORK), X(NMAX)
INTEGER ISTATE(NMAX+NCLMAX+NCNMAX), IWORK(LIWORK),

+ NEEDC(NCNMAX)
* .. External Subroutines ..

EXTERNAL E04UFF
* .. Executable Statements ..

WRITE (NOUT,*) ’E04UFF Example Program Results’
* Skip heading in data file.

READ (NIN,*)
READ (NIN,*) N, NCLIN, NCNLN
IF (N.LE.NMAX .AND. NCLIN.LE.NCLMAX .AND. NCNLN.LE.NCNMAX) THEN

*
* Read A, BL, BU and X from data file.
*

IF (NCLIN.GT.0) READ (NIN,*) ((A(I,J),J=1,N),I=1,NCLIN)
READ (NIN,*) (BL(I),I=1,N+NCLIN+NCNLN)
READ (NIN,*) (BU(I),I=1,N+NCLIN+NCNLN)
READ (NIN,*) (X(I),I=1,N)

*
* Set all constraint Jacobian elements to zero.
* Note that this will only work when ’Derivative Level = 3’
* (the default; see Section 11.2).
*

DO 40 J = 1, N
DO 20 I = 1, NCNLN

CJAC(I,J) = ZERO
20 CONTINUE
40 CONTINUE

*
* Solve the problem.
*

IFAIL = -1
IREVCM = 0

*
60 CALL E04UFF(IREVCM,N,NCLIN,NCNLN,LDA,LDCJ,LDR,A,BL,BU,ITER,

+ ISTATE,C,CJAC,CLAMDA,OBJF,OBJGRD,R,X,NEEDC,IWORK,
+ LIWORK,WORK,LWORK,IFAIL)

*
IF (IFAIL.EQ.-1 .AND. IREVCM.GT.0) THEN

IF (IREVCM.EQ.1 .OR. IREVCM.EQ.3) THEN
* Evaluate the objective function.

OBJF = X(1)*X(4)*(X(1)+X(2)+X(3)) + X(3)
END IF
IF (IREVCM.EQ.2 .OR. IREVCM.EQ.3) THEN

* Evaluate the objective gradient.
OBJGRD(1) = X(4)*(TWO*X(1)+X(2)+X(3))
OBJGRD(2) = X(1)*X(4)
OBJGRD(3) = X(1)*X(4) + ONE
OBJGRD(4) = X(1)*(X(1)+X(2)+X(3))

END IF
*

IF (IREVCM.EQ.4 .OR. IREVCM.EQ.6) THEN
* Evaluate the nonlinear constraint functions.

IF (NEEDC(1).GT.0) C(1) = X(1)**2 + X(2)**2 + X(3)**2 +
+ X(4)**2

IF (NEEDC(2).GT.0) C(2) = X(1)*X(2)*X(3)*X(4)
END IF
IF (IREVCM.EQ.5 .OR. IREVCM.EQ.6) THEN

* Evaluate the constraint Jacobian.
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IF (NEEDC(1).GT.0) THEN
CJAC(1,1) = TWO*X(1)
CJAC(1,2) = TWO*X(2)
CJAC(1,3) = TWO*X(3)
CJAC(1,4) = TWO*X(4)

END IF
IF (NEEDC(2).GT.0) THEN

CJAC(2,1) = X(2)*X(3)*X(4)
CJAC(2,2) = X(1)*X(3)*X(4)
CJAC(2,3) = X(1)*X(2)*X(4)
CJAC(2,4) = X(1)*X(2)*X(3)

END IF
END IF
GO TO 60

END IF
END IF

*
STOP
END

9.2 Program Data

E04UFF Example Program Data
4 1 2 :Values of N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 :End of matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 :End of BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 :End of BU
1.0 5.0 5.0 1.0 :End of X

9.3 Program Results

E04UFF Example Program Results

*** E04UFF
*** Start of NAG Library implementation details ***

Implementation title: Generalised Base Version
Precision: FORTRAN double precision

Product Code: FLBAS20D
Mark: 20A

*** End of NAG Library implementation details ***

Parameters
----------

Linear constraints..... 1 Variables.............. 4
Nonlinear constraints.. 2

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian................ NO

Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.38E-15

Derivative level....... 3 Monitoring file........ -1
Verify level........... 0

Major iterations limit. 50 Major print level...... 10
Minor iterations limit. 50 Minor print level...... 0

Workspace provided is IWORK( 100), WORK( 1000).
To solve problem we need IWORK( 17), WORK( 192).

Verification of the constraint gradients.
-----------------------------------------
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The constraint Jacobian seems to be ok.

The largest relative error was 2.28E-07 in constraint 2

Verification of the objective gradients.
----------------------------------------

The objective gradients seem to be ok.

Directional derivative of the objective 8.15250000E-01
Difference approximation 8.15249738E-01

Maj Mnr Step Merit Function Norm Gz Violtn Cond Hz
0 4 0.0E+00 1.738281E+01 7.1E-01 1.2E+01 1.0E+00
1 1 1.0E+00 1.703169E+01 4.6E-02 1.9E+00 1.0E+00
2 1 1.0E+00 1.701442E+01 2.1E-02 8.8E-02 1.0E+00
3 1 1.0E+00 1.701402E+01 3.1E-04 5.4E-04 1.0E+00
4 1 1.0E+00 1.701402E+01 7.0E-06 9.9E-08 1.0E+00
5 1 1.0E+00 1.701402E+01 1.1E-08 4.6E-11 1.0E+00

Exit from NP problem after 5 major iterations,
9 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL 1.00000 1.00000 5.00000 1.088 .
V 2 FR 4.74300 1.00000 5.00000 . 0.2570
V 3 FR 3.82115 1.00000 5.00000 . 1.179
V 4 FR 1.37941 1.00000 5.00000 . 0.3794

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 FR 10.9436 None 20.0000 . 9.056

N Con State Value Lower Bound Upper Bound Lagr Mult Slack

N 1 UL 40.0000 None 40.0000 -0.1615 -3.5264E-11
N 2 LL 25.0000 25.0000 None 0.5523 -2.8791E-11

Exit E04UFF - Optimal solution found.

Final objective value = 17.01402

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed

description of the algorithm which may be needed in order to understand Section 11 and Section 12. Section 11

describes the optional parameters which may be set by calls to E04UDF and/or E04UEF. Section 12 describes

the quantities which can be requested to monitor the course of the computation.

10 Algorithmic Details

This section contains a detailed description of the method used by E04UFF=E04UFA.

10.1 Overview

E04UFF=E04UFA is essentially identical to the subroutine NPSOL described in Gill et al. (1986).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. An active simple bound
constraint implies that the corresponding variable is fixed at its bound, and hence the variables are
partitioned into fixed and free variables. Let C denote the m by n matrix of gradients of the active general
linear and nonlinear constraints. The number of fixed variables will be denoted by nFX, with
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nFRðnFR ¼ n� nFXÞ the number of free variables. The subscripts ‘FX’ and ‘FR’ on a vector or matrix
will denote the vector or matrix composed of the elements corresponding to fixed or free variables.

A point x is a first-order Kuhn–Tucker point for (1) (see Powell (1974)) if the following conditions hold:

(i) x is feasible;

(ii) there exist vectors � and � (the Lagrange multiplier vectors for the bound and general constraints)
such that

g ¼ CT�þ � ð2Þ
where g is the gradient of F evaluated at x and �j ¼ 0 if the jth variable is free.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower bound must be
non-negative. It is non-positive for an inequality constraint active at its upper bound.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of CFR;
i.e., CFRZ ¼ 0. An equivalent statement of the condition (2) in terms of Z is

ZTgFR ¼ 0:

The vector ZTgFR is termed the projected gradient of F at x. Certain additional conditions must be
satisfied in order for a first-order Kuhn–Tucker point to be a solution of (1) (see Powell (1974)).

E04UFF=E04UFA implements a sequential quadratic programming (SQP) method. For an overview of
SQP methods, see Fletcher (1987), Gill et al. (1981) and Powell (1983).

The basic structure of E04UFF=E04UFA involves major and minor iterations. The major iterations

generate a sequence of iterates fxkg that converge to x�, a first-order Kuhn–Tucker point of (1). At a
typical major iteration, the new iterate �xx is defined by

�xx ¼ xþ �p ð3Þ
where x is the current iterate, the non-negative scalar � is the step length, and p is the search direction.
(For simplicity, we shall always consider a typical iteration and avoid reference to the index of the
iteration.) Also associated with each major iteration are estimates of the Lagrange multipliers and a
prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

Minimize
p

gTpþ 1
2
pTHp subject to �ll �

p
ALp
ANp

8<
:

9=
; � �uu; ð4Þ

where g is the gradient of F at x, the matrix H is a positive-definite quasi-Newton approximation to the
Hessian of the Lagrangian function (see Section 10.4), and AN is the Jacobian matrix of c evaluated at x.
(Finite difference estimates may be used for g and AN; see the optional parameter Derivative Level in
Section 11.2.) Let l in (1) be partitioned into three sections: lB, lL and lN, corresponding to the bound,

linear and nonlinear constraints. The vector �ll in (4) is similarly partitioned and is defined as

�llB ¼ lB � x; �llL ¼ lL � ALx; and �llN ¼ lN � c;

where c is the vector of nonlinear constraints evaluated at x. The vector �uu is defined in an analogous
fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the
subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear and
nonlinear constraints in the QP active set are the quantities Bnd, Lin and Nln in the monitoring file output
of E04UFF=E04UFA; see Section 12.) In E04UFF=E04UFA, (4) is solved using E04NCF=E04NCA. Since
solving a quadratic program is itself an iterative procedure, the minor iterations of E04UFF=E04UFA are
the iterations of E04NCF=E04NCA. (More details about solving the subproblem are given in Section 10.2.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the subscripts
‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let C denote the m by n matrix of
gradients of the general linear and nonlinear constraints in the predicted active set. Firstly, we have
available the TQ factorization of CFR:
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CFRQFR ¼ ð0 T Þ; ð5Þ
where T is a non-singular m by m reverse-triangular matrix (i.e., tij ¼ 0 if iþ j < m), and the non-

singular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)).
Secondly, we have the upper triangular Cholesky factor R of the transformed and re-ordered Hessian
matrix

RTR ¼ HQ � QT ~HHQ; ð6Þ

where ~HH is the Hessian H with rows and columns permuted so that the free variables are first and Q is the
n by n matrix

Q ¼ QFR

IFX

� �
ð7Þ

with IFX the identity matrix of order nFX. If the columns of QFR are partitioned so that

QFR ¼ Z Yð Þ;
then the nZ (nZ � nFR �m) columns of Z form a basis for the null space of CFR. The matrix Z is used

to compute the projected gradient ZTgFR at the current iterate. (The values Nz and Norm Gz printed by

E04UFF=E04UFA give nZ and jjZTgFRjj, see Section 12.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP subproblem (4) is

identical to the correct active set in a neighbourhood of x�. In E04UFF=E04UFA, this feature is exploited
by using the QP active set from the previous iteration as a prediction of the active set for the next QP
subproblem, which leads in practice to optimality of the subproblems in only one iteration as the solution
is approached. Separate treatment of bound and linear constraints in E04UFF=E04UFA also saves
computation in factorizing CFR and HQ.

Once p has been computed, the major iteration proceeds by determining a step length � that produces a
‘sufficient decrease’ in an augmented Lagrangian merit function (see Section 10.3). Finally, the
approximation to the transformed Hessian matrix HQ is updated using a modified BFGS quasi-Newton

update (see Section 10.4) to incorporate new curvature information obtained in the move from x to �xx.

On entry to E04UFF=E04UFA, an iterative procedure from E04NCF=E04NCA is executed, starting with
the user-provided initial point, to find a point that is feasible with respect to the bounds and linear
constraints (using the tolerance specified by Linear Feasibility Tolerance; see Section 11.2). If no
feasible point exists for the bound and linear constraints, (1) has no solution and E04UFF=E04UFA
terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are feasible
with respect to the bounds and linear constraints. The only exception involves variables whose bounds
differ by an amount comparable to the finite difference interval (see the discussion of Difference Interval
in Section 11.2). In contrast to the bounds and linear constraints, it must be emphasised that the nonlinear
constraints will not generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the user-provided gradients appear to be correct (see the optional
parameter Verify in Section 11.2). In general, the check is provided at the first point that is feasible with
respect to the linear constraints and bounds. However, the user may request that the check be performed at
the initial point.

In summary, the method of E04UFF=E04UFA first determines a point that satisfies the bound and linear
constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem;

(b) a line search with an augmented Lagrangian merit function; and

(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function.

These three procedures are described in more detail in Section 10.2 to Section 10.4.
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10.2 Solution of the Quadratic Programming Subproblem

The search direction p is obtained by solving (4) using E04NCF=E04NCA (see Gill et al. (1986)), which
was specifically designed to be used within an SQP algorithm for nonlinear programming.

E04NCF=E04NCA is based on a two-phase (primal) quadratic programming method. The two phases of
the method are: finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility
phase) and minimizing the quadratic objective function within the feasible region (the optimality phase).
The computations in both phases are performed by the same subroutines. The two-phase nature of the
algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the
quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate of the
solution of (4); the new iterate �pp is defined by

�pp ¼ pþ �d ð8Þ
where, as in (3), � is a non-negative step length and d is a search direction.

At the beginning of each iteration of E04NCF=E04NCA, a working set is defined of constraints (general
and bound) that are satisfied exactly. The vector d is then constructed so that the values of constraints in
the working set remain unaltered for any move along d. For a bound constraint in the working set, this
property is achieved by setting the corresponding element of d to zero, i.e., by fixing the variable at its
bound. As before, the subscripts ‘FX’ and ‘FR’ denote selection of the elements associated with the fixed
and free variables.

Let C denote the sub-matrix of rows of

AL

AN

� �

corresponding to general constraints in the working set. The general constraints in the working set will
remain unaltered if

CFRdFR ¼ 0; ð9Þ
which is equivalent to defining dFR as

dFR ¼ ZdZ ð10Þ
for some vector dZ, where Z is the matrix associated with the TQ factorization (5) of CFR.

The definition of dZ in (10) depends on whether the current p is feasible. If not, dZ is zero except for an
element � in the jth position, where j and � are chosen so that the sum of infeasibilities is decreasing
along d. (For further details, see Gill et al. (1986).) In the feasible case, dZ satisfies the equations

RT
ZRZdZ ¼ �ZTqFR; ð11Þ

where RZ is the Cholesky factor of ZTHFRZ and q is the gradient of the quadratic objective function

ðq ¼ gþHpÞ. (The vector ZTqFR is the projected gradient of the QP.) With (11), pþ d is the minimizer
of the quadratic objective function subject to treating the constraints in the working set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the subspace
defined by the working set. During the feasibility phase, the projected gradient will usually be zero only at
a vertex (although it may vanish at non-vertices in the presence of constraint dependencies). During the
optimality phase, a zero projected gradient implies that p minimizes the quadratic objective function when
the constraints in the working set are treated as equalities. In either case, Lagrange multipliers are
computed. Given a positive constant � of the order of the machine precision, the Lagrange multiplier 	j

corresponding to an inequality constraint in the working set is said to be optimal if 	j � � when the jth
constraint is at its upper bound, or if 	j � �� when the associated constraint is at its lower bound. If any

multiplier is non-optimal, the current objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero, no
feasible point exists. The QP algorithm will then continue iterating to determine the minimum sum of
infeasibilities. At this point, the Lagrange multiplier 	j will satisfy �ð1þ �Þ � 	j � � for an inequality
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constraint at its upper bound, and �� � 	j � ð1þ �Þ for an inequality at its lower bound. The Lagrange

multiplier for an equality constraint will satisfy j	jj � 1þ �.

The choice of step length � in the QP iteration (8) is based on remaining feasible with respect to the
satisfied constraints. During the optimality phase, if pþ d is feasible, � will be taken as unity. (In this
case, the projected gradient at �pp will be zero.) Otherwise, � is set to �M, the step to the ‘nearest’
constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to CFR: if the status of a general constraint
changes, a row of CFR is altered; if a bound constraint enters or leaves the working set, a column of CFR

changes. Explicit representations are recurred of the matrices T , QFR and R, and of the vectors QTq and

QTg.

10.3 The Merit Function

After computing the search direction as described in Section 10.2, each major iteration proceeds by
determining a step length � in (3) that produces a ‘sufficient decrease’ in the augmented Lagrangian merit
function

Lðx; �; sÞ ¼ F ðxÞ �
X
i

�iðciðxÞ � siÞ þ 1
2

X
i


iðciðxÞ � siÞ2; ð12Þ

where x, � and s vary during the line search. The summation terms in (12) involve only the nonlinear
constraints. The vector � is an estimate of the Lagrange multipliers for the nonlinear constraints of (1).
The non-negative slack variables fsig allow nonlinear inequality constraints to be treated without
introducing discontinuities. The solution of the QP subproblem (4) provides a vector triple that serves as a
direction of search for the three sets of variables. The non-negative vector 
 of penalty parameters is
initialised to zero at the beginning of the first major iteration. Thereafter, selected elements are increased
whenever necessary to ensure descent for the merit function. Thus, the sequence of norms of 
 (the
printed quantity Penalty; see Section 12) is generally non-decreasing, although each 
i may be reduced a
limited number of times.

The merit function (12) and its global convergence properties are described in Gill et al. (1986).

10.4 The Quasi-Newton Update

The matrix H in (4) is a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian
function. (For a review of quasi-Newton methods, see Dennis and Schnabel (1983).) At the end of each

major iteration, a new Hessian approximation �HH is defined as a rank-two modification of H. In
E04UFF=E04UFA, the BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton update is used:

�HH ¼ H � 1

sTHs
HssTH þ 1

yTs
yyT ; ð13Þ

where s ¼ �xx� x (the change in x).

In E04UFF=E04UFA, H is required to be positive-definite. If H is positive-definite, �HH defined by (13)

will be positive-definite if and only if yTs is positive (see Dennis and Moré (1977)). Ideally, y in (13)
would be taken as yL, the change in gradient of the Lagrangian function

yL ¼ �gg� �AAT
N	N � gþAT

N	N; ð14Þ
where 	N denotes the QP multipliers associated with the nonlinear constraints of the original problem. If

yTLs is not sufficiently positive, an attempt is made to perform the update with a vector y of the form

y ¼ yL þ
XmN

i¼1

!iðaiðx̂xÞciðx̂xÞ � aiðxÞciðxÞÞ;

where !i � 0. If no such vector can be found, the update is performed with a scaled yL. In this case, M is
printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (6) is updated, where

Q is the matrix from (5) associated with the active set of the QP subproblem. The update (13) is
equivalent to the following update to HQ:
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�HHQ ¼ HQ � 1

sTQHQsQ
HQsQs

T
QHQ þ 1

yTQsQ
yQy

T
Q; ð15Þ

where yQ ¼ QTy, and sQ ¼ QTs. This update may be expressed as a rank-one update to R (see Dennis

and Schnabel (1981)).

11 Optional Parameters

Several optional parameters in E04UFF=E04UFA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal parameters of E04UFF=E04UFA these optional
parameters have associated default values that are appropriate for most problems. Therefore the user need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or both, of E04UDF=E04UDA and
E04UEF=E04UEA prior to a call to E04UFF=E04UFA.

E04UDF=E04UDA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print level = 1

End

The call

CALL E04UDF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit.
E04UDF=E04UDA should be consulted for a full description of this method of supplying optional
parameters.

E04UEF=E04UEA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04UEF (’Print level = 1’)

E04UEF=E04UEA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04UFF=E04UFA (unless they define invalid values) and so remain
in effect for subsequent calls to E04UFF=E04UFA, unless altered by the user.

11.1 Optional parameter checklist and default values

For easy reference, the following list shows all the valid keywords and their default values. The symbol �
represents the machine precision (see X02AJF).

Optional Parameters Default Values

Central Difference Interval Computed Automatically
Cold/Warm Start Cold start
Crash Tolerance 0.01
Defaults
Derivative Level 3
Difference Interval Computed automatically
Feasibility Tolerance

ffiffi
�

p

Function Precision �0:9

Hessian No
Infinite Bound Size 1020

Infinite Step Size 1020
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Line Search Tolerance 0.9
Linear Feasibility Tolerance

ffiffi
�

p

List/Nolist List (Nolist for E04UFA)
Major Iteration Limit maxð50; 3ðnþ nLÞ þ 10nNÞ
Major Print Level 10 (0 for E04UFA)
Minor Iteration Limit maxð50; 3ðnþ nL þ nNÞÞ
Minor Print Level 0
Monitoring file �1
Nonlinear Feasibility Tolerance �0:33 or

ffiffi
�

p

Optimality Tolerance �0:8R

Step Limit 2.0
Start Objective Check 1
Start Constraint Check 1
Stop Objective Check n
Stop Constraint Check n
Verify Level 0

11.2 Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword,
any essential optional qualifiers, the default value and the definition. The minimum abbreviation of each
keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be
omitted. The letter a denotes a phrase (character string) that qualifies an option. The letters i and r denote
INTEGER and real values required with certain options. The number � is a generic notation for machine
precision (see X02AJF) and �R denotes the relative precision of the objective function (the optional
parameter Function Precision; see below).

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate then the value of r is used as the difference interval for every element of x. The
switch to central differences is indicated by C at the end of each line of intermediate printout produced by
the major iterations (see Section 8.1). The use of finite differences is discussed further below under the
optional parameter Difference Interval.

Cold Start Default ¼ Cold Start
Warm Start

This option controls the specification of the initial working set in both the procedure for finding a feasible
point for the linear constraints and bounds and in the first QP subproblem thereafter. With a Cold Start,
the first working set is chosen by E04UFF=E04UFA based on the values of the variables and constraints at
the initial point. Broadly speaking, the initial working set will include equality constraints and bounds or
inequality constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance; see below).

With a Warm Start, the user must set the ISTATE array and define CLAMDA and R as discussed in
Section 5. ISTATE values associated with bounds and linear constraints determine the initial working set
of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE values
associated with nonlinear constraints determine the initial working set of the first QP subproblem after such
a feasible point has been found. E04UFF=E04UFA will override the user’s specification of ISTATE if
necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any elements
of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which are set to 3 when
the corresponding elements of BL and BU are not equal. A warm start will be advantageous if a good
estimate of the initial working set is available – for example, when E04UFF=E04UFA is called repeatedly
to solve related problems.

Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04UFF=E04UFA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a
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constraint of the form aTj x � l will be included in the initial working set if jaTj x� lj � rð1þ jljÞ. If r < 0

or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

This parameter indicates which derivatives are provided by the user during intermediate exits. The
possible choices for i are the following.

i Meaning

3 All elements of the objective gradient and the constraint Jacobian are provided.
2 All elements of the constraint Jacobian are provided, but some elements of the objective gradient are

not specified.
1 All elements of the objective gradient are provided, but some elements of the constraint Jacobian are

not specified.
0 Some elements of both the objective gradient and the constraint Jacobian are not specified.

The value i ¼ 3 should be used whenever possible, since E04UFF=E04UFA is more reliable (and will
usually be more efficient) when all derivatives are exact.

If i ¼ 0 or 2, E04UFF=E04UFA will estimate the unspecified elements of the objective gradient, using
finite differences. The computation of finite difference approximations usually increases the total run-time,
since an intermediate exit to the calling program is required for each unspecified element. Furthermore,
less accuracy can be attained in the solution (see Chapter 8 of Gill et al. (1981), for a discussion of
limiting accuracy).

If i ¼ 0 or 1, E04UFF=E04UFA will approximate unspecified elements of the constraint Jacobian. One
intermediate exit is needed for each variable for which partial derivatives are not available. For example, if
the Jacobian has the form

� � � �
� ? ? �
� � ? �
� � � �

0
BB@

1
CCA

where ‘�’ indicates an element provided by the user and ‘?’ indicates an unspecified element,
E04UFF=E04UFA will make an intermediate exit to the calling program twice: once to estimate the
missing element in column 2, and again to estimate the two missing elements in column 3. (Since
columns 1 and 4 are known, they require no intermediate exits for information.)

At times, central differences are used rather than forward differences, in which case twice as many
intermediate exits are needed. (The switch to central differences is not under the user’s control.)

If i < 0 or i > 3, the default value is used.

Difference Interval r Default values are computed

This option defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of Verify, below).

(b) For estimating unspecified elements of the objective gradient or the constraint Jacobian. In general, a
derivative with respect to the jth variable is approximated using the interval �j, where

�j ¼ rð1þ jx̂xjjÞ, with x̂x the first point feasible with respect to the bounds and linear constraints.

If the functions are well scaled then the resulting derivative approximation should be accurate to OðrÞ.
See Gill et al. (1981) for a discussion of the accuracy in finite difference approximations.

If a difference interval is not specified by the user then a finite difference interval will be computed
automatically for each variable by a procedure that requires up to six intermediate exits for each element.
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This option is recommended if the function is badly scaled or the user wishes to have E04UFF=E04UFA
determine constant elements in the objective and constraint gradients.

Feasibility Tolerance r Default ¼
ffiffi
�

p

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints at a
‘feasible’ point; i.e., a constraint is considered satisfied if its violation does not exceed r. If r < � or
r � 1, the default value is used. Using this keyword sets both optional parameters Linear Feasibility
Tolerance and Nonlinear Feasibility Tolerance to r, if � � r < 1. (Additional details are given below
under the descriptions of these parameters.)

Function Precision r Default ¼ �0:9

This parameter defines �R, which is intended to be a measure of the accuracy with which the problem
functions F ðxÞ and cðxÞ can be computed. If r < � or r � 1, the default value is used.

The value of �R should reflect the relative precision of 1þ jF ðxÞj; i.e., �R acts as a relative precision when
jF j is large and as an absolute precision when jF j is small. For example, if F ðxÞ is typically of order

1000 and the first six significant digits are known to be correct, an appropriate value for �R would be 10�6.

In contrast, if F ðxÞ is typically of order 10�4 and the first six significant digits are known to be correct, an

appropriate value for �R would be 10�10. The choice of �R can be quite complicated for badly scaled
problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default value is
appropriate for most simple functions that are computed with full accuracy. However, when the accuracy
of the computed function values is known to be significantly worse than full precision, the value of �R
should be large enough so that E04UFF=E04UFA will not attempt to distinguish between function values
that differ by less than the error inherent in the calculation.

Hessian Default ¼ No

This option controls the contents of the upper triangular matrix R (see Section 5). E04UFF=E04UFA
works exclusively with the transformed and re-ordered Hessian HQ (6), and hence extra computation is

required to form the Hessian itself. If Hessian ¼ No, R contains the Cholesky factor of the transformed
and re-ordered Hessian. If Hessian ¼ Yes, the Cholesky factor of the approximate Hessian itself is formed
and stored in R. The user should select Hessian ¼ Yes if a Warm Start will be used for the next call to
E04UFF=E04UFA.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound less
than or equal to �bigbnd will be regarded as minus infinity). If r � 0, the default value is used.

Infinite Step Size r Default ¼ maxðbigbnd; 1020Þ
If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an unbounded
solution. If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ maxð50; 3ðnþ nLÞ þ 10nNÞ
See Major Iteration Limit below.

Line Search Tolerance r Default ¼ 0:9

The value r ð0 � r < 1Þ controls the accuracy with which the step � taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value of r, the
more accurate the line search). The default value r ¼ 0:9 requests an inaccurate search and is appropriate
for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to
reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if a
substantial number of derivatives are unspecified. If r < 0 or r � 1, the default value is used.
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Linear Feasibility Tolerance r1 Default ¼
ffiffi
�

p

Nonlinear Feasibility Tolerance r2 Default ¼ �0:33 or
ffiffi
�

p
(see below)

The default value of r2 is �0:33 if Derivative Level ¼ 0 or 1, and
ffiffi
�

p
otherwise.

The scalars r1 and r2 define the maximum acceptable absolute violations in linear and nonlinear
constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not
exceed r1. Similarly a nonlinear constraint is considered satisfied if its violation does not exceed r2. If
rm < � or rm � 1, the default value is used, for m ¼ 1; 2.

On entry to E04UFF=E04UFA, an iterative procedure is executed in order to find a point that satisfies the
linear constraints and bounds on the variables to within the tolerance r1. All subsequent iterates will
satisfy the linear constraints to within the same tolerance (unless r1 is comparable to the finite difference
interval).

For nonlinear constraints, the feasibility tolerance r2 defines the largest constraint violation that is
acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final iterate,
the value of Nonlinear Feasibility Tolerance acts as a partial termination criterion for the iterative
sequence generated by E04UFF=E04UFA (see the discussion of Optimality Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example, if the variables
and the coefficients in the linear constraints are of order unity, and the latter are correct to about 6 decimal

digits, it would be appropriate to specify r1 as 10�6.

List Default for E04UFF ¼ List
Nolist Default for E04UFA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Nolist may be used to suppress
the printing and List may be used to restore printing.

Major Iteration Limit i Default ¼ maxð50; 3ðnþ nLÞ þ 10nNÞ
Iteration Limit
Iters
Itns

The value of i specifies the maximum number of major iterations allowed before termination. Setting
i ¼ 0 and Major Print Level > 0 means that the workspace needed will be computed and printed, but no
iterations will be performed. If i < 0, the default value is used.

Major Print Level i Default for E04UFF ¼ 10
Print Level Default for E04UFA ¼ 0

The value of i controls the amount of printout produced by the major iterations of E04UFF=E04UFA, as
indicated below. A detailed description of the printed output is given in Section 8.1 (summary output at
each major iteration and the final solution) and Section 12 (monitoring information at each major iteration).
(See also Minor Print Level, below.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.
1 The final solution only.
5 One line of summary output (< 80 characters; see Section 8.1) for each major iteration (no printout

of the final solution).
� 10 The final solution and one line of summary output for each major iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File (see below):

i Output

< 5 No output.
� 5 One long line of output (> 80 characters; see Section 12) for each major iteration (no printout of

the final solution).
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� 20 At each major iteration, the objective function, the Euclidean norm of the nonlinear constraint
violations, the values of the nonlinear constraints (the vector c), the values of the linear constraints
(the vector ALx) and the current values of the variables (the vector x).

� 30 At each major iteration, the diagonal elements of the matrix T associated with the TQ factorization
(5) (see Section 10.1) of the QP working set and the diagonal elements of R, the triangular factor
of the transformed and re-ordered Hessian (6) (see Section 10.1).

If Major Print Level � 5 and the unit number defined by Monitoring File is the same as that defined by
X04ABF, then the summary output for each major iteration is suppressed.

Minor Iteration Limit i Default ¼ maxð50; 3ðnþ nL þ nNÞÞ
The value of i specifies the maximum number of iterations for finding a feasible point with respect to the
bounds and linear constraints (if any). The value of i also specifies the maximum number of minor
iterations for the optimality phase of each QP subproblem. If i � 0, the default value is used.

Minor Print Level i Default ¼ 0

The value of i controls the amount of printout produced by the minor iterations of E04UFF=E04UFA (i.e.,
the iterations of the quadratic programming algorithm), as indicated below. A detailed description of the
printed output is given in Section 8.2 of the document for E04NCF=E04NCA (summary output at each
minor iteration and the final QP solution) and Section 12 of the document for E04NCF=E04NCA)
(monitoring information at each minor iteration). (See also Major Print Level, above.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.
1 The final QP solution only.
5 One line of summary output (< 80 characters; see Section 8.2 of the document for

E04NCF=E04NCA) for each minor iteration (no printout of the final QP solution).
� 10 The final QP solution and one line of summary output for each minor iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File (see below):

i Output

< 5 No output.
� 5 One long line of output (> 80 characters; see Section 8.2 of the document for E04NCF=E04NCA)

for each minor iteration (no printout of the final QP solution).
� 20 At each minor iteration, the current estimates of the QP multipliers, the current estimate of the QP

search direction, the QP constraint values and the status of each QP constraint.
� 30 At each minor iteration, the diagonal elements of the matrix T associated with the TQ factorization

(5) (see Section 10.1) of the QP working set and the diagonal elements of the Cholesky factor R of
the transformed Hessian (6) (see Section 10.1).

If Minor Print Level � 5 and the unit number defined by Monitoring File is the same as that defined by
X04ABF then the summary output for each minor iteration is suppressed.

Monitoring File i Default ¼ �1

If i � 0 and Major Print Level � 5 (see above) or i � 0 and Minor Print Level � 5 (see above),
monitoring information produced by E04UFF=E04UFA at every iteration is sent to a file with logical unit
number i. If i < 0 and/or Major Print Level < 5 and Minor Print Level < 5, no monitoring information
is produced.

Nonlinear Feasibility Tolerance i Default ¼ �0:33 or
ffiffi
�

p

See Linear Feasibility Tolerance above.
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Optimality Tolerance r Default ¼ �0:8R

The parameter r ð�R � r < 1Þ specifies the accuracy to which the user wishes the final iterate to
approximate a solution of the problem. Broadly speaking, r indicates the number of correct figures desired

in the objective function at the solution. For example, if r is 10�6 and E04UFF=E04UFA terminates
successfully, the final value of F should have approximately six correct figures. If r < �R or r � 1, the
default value is used.

E04UFF=E04UFA will terminate successfully if the iterative sequence of x-values is judged to have
converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 10.1). The
sequence of iterates is considered to have converged at x if

�kpk �
ffiffiffi
r

p
ð1þ kxkÞ; ð16Þ

where p is the search direction and � the step length from (3). An iterate is considered to satisfy the first-
order conditions for a minimum if

kZTgFRk �
ffiffiffi
r

p
ð1þmaxð1þ jF ðxÞj; kgFRkÞÞ ð17Þ

and

jresjj � ftol for all j; ð18Þ

where ZTgFR is the projected gradient (see Section 10.1), gFR is the gradient of F ðxÞ with respect to the
free variables, resj is the violation of the jth active nonlinear constraint and ftol is the Nonlinear

Feasibility Tolerance.

Print Level

See Major Print Level above.

Start Objective Check At Variable i1 Default ¼ 1
Stop Objective Check At Variable i2 Default ¼ n
Start Constraint Check At Variable Default ¼ 1
Stop Constraint Check At Variable Default ¼ n

These keywords take effect only if Verify Level > 0 (see below). They may be used to control the
verification of gradient elements and/or Jacobian elements computed by the calling program during
intermediate exits. For example, if the first 30 elements of the objective gradient appeared to be correct in
an earlier run, so that only element 31 remains questionable, it is reasonable to specify Start Objective
Check At Variable 31. If the first 30 variables appear linearly in the objective, so that the corresponding
gradient elements are constant, the above choice would also be appropriate.

If i2m�1 � 0 or i2m�1 > minðn; i2mÞ, the default value is used, for m ¼ 1; 2. If i2m � 0 or i2m > n, the
default value is used, for m ¼ 1; 2.

Step Limit r Default ¼ 2:0

If r > 0; r specifies the maximum change in variables at the first step of the line search. In some cases,

such as F ðxÞ ¼ aebx or F ðxÞ ¼ axb, even a moderate change in the elements of x can lead to floating-
point overflow. The parameter r is therefore used to encourage evaluation of the problem functions at
meaningful points. Given any major iterate x, the first point ~xx at which F and c are evaluated during the
line search is restricted so that

k~xx� xk2 � rð1þ kxk2Þ:

The line search may go on and evaluate F and c at points further from x if this will result in a lower value
of the merit function (indicated by L at the end of each line of output produced by the major iterations; see
Section 8.1). If L is printed for most of the iterations, r should be set to a larger value.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at wild values. The default value Step Limit = 2.0 should not affect progress on well-behaved
functions, but values such as 0.1 or 0.01 may be helpful when rapidly varying functions are present. If a
small value of Step Limit is selected then a good starting point may be required. An important application
is to the class of nonlinear least-squares problems. If r � 0, the default value is used.
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Stop Constraint Check At Variable

See Start Constraint Check At Variable above.

Stop Objective Check At Variable

See Start Objective Check At Variable above.

Verify Level i Default ¼ 0
Verify
Verify Objective Gradients
Verify Constraint Gradients
Verify Gradients

The possible choices for i are as follows:

i Meaning

�1 No checks are performed.
0 Only a ‘cheap’ test will be performed, requiring one intermediate exit for the objective function

gradients and (if appropriate) one intermediate exit for the partial derivatives of the constraints.
1 In addition to the ‘cheap’ test, individual gradient elements will also be checked using a reliable (but

more expensive) test.

For example, the objective gradient will be verified if Verify, Verify Yes, Verify Gradients, Verify
Objective Gradients or Verify Level ¼ 1 is specified.

These keywords refer to finite difference checks on the gradient elements computed by the calling program
during intermediate exits. (Unspecified gradient elements are not checked.) It is possible to specify Verify
Levels 0 – 3 in several ways, as indicated above. For example, the nonlinear objective gradient (if any)
will be verified if either Verify Objective Gradients or Verify Level 1 is specified. Similarly, the
objective and the constraint gradients will be verified if Verify Yes or Verify Level 3 or Verify is
specified.

If i ¼ �1, then no checking will be performed.

If 0 � i � 3, gradients will be verified at the first point that satisfies the linear constraints and bounds. If
i ¼ 0, only a ‘cheap’ test will be performed, requiring one intermediate exit for the objective function
gradients and (if appropriate) one intermediate exit for the partial derivatives of the constraints. If
1 � i � 3, a more reliable (but more expensive) check will be made on individual gradient elements,
within the ranges specified by the Start and Stop keywords described above. A result of the form OK or
BAD? is printed by E04UFF=E04UFA to indicate whether or not each element appears to be correct.

If 10 � i � 13, the action is the same as for i� 10, except that it will take place at the user-specified
initial value of x.

If i < �1 or 4 � i � 9 or i > 13, the default value is used.

We suggest that Verify Level ¼ 3 be used whenever a new calling program is being developed.

Warm Start

See Cold Start above.

12 Description of Monitoring Information

This section describes the long line of output (> 80 characters) which forms part of the monitoring
information produced by E04UFF=E04UFA. (See also the description of the optional parameters Major
Print Level, Minor Print Level and Monitoring File in Section 11.2.) The level of printed output can be
controlled by the user.

When Major Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
major iteration of E04UFF=E04UFA on the unit number specified by Monitoring File. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.
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Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10).

Note that Mnr may be greater than the Minor Iteration Limit
(default value ¼ maxð50; 3ðnþ nL þ nNÞÞ; see Section 11.2) if some iterations
are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulative number of evaluations of the objective function needed for the line
search. Evaluations needed for the estimation of the gradients by finite differences
are not included. Nfun is printed as a guide to the amount of work required for the
line search.

Merit Function is the value of the augmented Lagrangian merit function (12) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase the
penalty parameters (see Section 10.3). As the solution is approached, Merit
Function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the
current output line) then the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values will
decrease monotonically until either a feasible subproblem is obtained or
E04UFF=E04UFA terminates with IFAIL ¼ 3 (no feasible point could be found
for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F ðxÞ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is kZTgFRk, the Euclidean norm of the projected gradient (see Section 10.2). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Nz is the number of columns of Z (see Section 10.2 of the document for
E04UCF=E04UCA). The value of Nz is the number of variables minus the number
of constraints in the predicted active set; i.e., Nz ¼ n� ðBndþ Linþ NlnÞ.

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted working set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
NCNLN is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if NCNLN is zero).

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation

HZ (HZ ¼ ZTHFRZ ¼ RT
ZRZ ; see (6) and (11) of the document for

E04UCF=E04UCA). The larger this number, the more difficult the problem.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.
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Conv is a three-letter indication of the status of the three convergence tests (16)–(18)
defined in the description of the optional parameter Optimality Tolerance in
Section 11.2. Each letter is T if the test is satisfied and F otherwise. The three tests
indicate whether: (a) the sequence of iterates has converged;

(b) the projected gradient (Norm Gz) is sufficiently small; and

(c) the norm of the residuals of constraints in the predicted active set (Violtn) is
small enough.

If any of these indicators is F when E04UFF=E04UFA terminates with IFAIL ¼ 0,
the user should check the solution carefully.

M is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive-definite (see Section 10.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified objective
and constraint gradients. If the value of Step is zero then the switch to central
differences was made because no lower point could be found in the line search. (In
this case, the QP subproblem is re-solved with the central difference gradient and
Jacobian.) If the value of Step is non-zero then central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see
Section 10.1 of the document for E04UCF=E04UCA).

L is printed if the line search has produced a relative change in x greater than the
value defined by the optional parameter Step Limit (default value ¼ 2:0; see
Section 11.2). If this output occurs frequently during later iterations of the run,
Step Limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly conditioned
then the approximate Hessian is refactorized using column interchanges. If
necessary, R is modified so that its diagonal condition estimator is bounded.
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