
NAG Fortran Library Routine Document

E04NQF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the details of

the algorithm. If you wish to use default settings for all of the optional parameters, you need only read

Sections 1 to 9 of this document. Refer to the additional Sections 10, 11 and 12 for a detailed description of the

algorithm, the specification of the optional parameters and a description of the monitoring information

produced by the routine.

1 Purpose

E04NQF solves sparse linear programming or convex quadratic programming problems. The initialization
routine E04NPF must have been called prior to calling E04NQF.

2 Specification

SUBROUTINE E04NQF (START, QPHX, M, N, NE, NNAME, LENC, NCOLH, IOBJ,
1 OBJADD, PROB, ACOL, INDA, LOCA, BL, BU, C, NAMES,
2 HELAST, HS, X, PI, RC, NS, NINF, SINF, OBJ, CW,
3 LENCW, IW, LENIW, RW, LENRW, CUSER, IUSER, RUSER,
4 IFAIL)

INTEGER M, N, NE, NNAME, LENC, NCOLH, IOBJ, INDA(NE),
1 LOCA(N+1), HELAST(N+M), HS(N+M), NS, NINF, LENCW,
2 IW(LENIW), LENIW, LENRW, IUSER(*), IFAIL

double precision OBJADD, ACOL(NE), BL(N+M), BU(N+M), C(*), X(N+M),
1 PI(M), RC(N+M), SINF, OBJ, RW(LENRW), RUSER(*)
CHARACTER*1 START
CHARACTER*8 PROB, NAMES(NNAME), CW(LENCW), CUSER(*)
EXTERNAL QPHX

Before calling E04NQF or one of the option setting routines E04NRF, E04NSF, E04NTF or E04NUF,
routine E04NPF must be called. The specification for E04NPF is:

SUBROUTINE E04NPF (CW, LENCW, IW, LENIW, RW, LENRW, IFAIL)

INTEGER LENCW, IW(LENIW), LENIW, LENRW, IFAIL

double precision RW(LENRW)
CHARACTER*8 CW(LENCW)

LENCW, LENIW and LENRW, the declared lengths of CW, IW and RW respectively, must satisfy:

LENCW � 600

LENIW � 600

LENRW � 600

The contents of the arrays CW, IW and RW must not be altered between calling routines E04NPF,
E04NQF, E04NRF, E04NSF, E04NTF and E04NUF.

After calling E04NQF you can call one or both of the routines E04NXF or E04NYF to obtain the current
value of an optional parameter.
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3 Description

E04NQF is designed to solve large scale linear or quadratic programming problems that are assumed to be
stated in the following general form:

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u, ð1Þ

where x is a set of n variables, l and u are constant lower and upper bounds, and A is a sparse matrix and
f xð Þ is a linear or quadratic objective function that may be specified in a variety of ways, depending upon
the particular problem being solved. The optional parameter Maximize (see Section 11.2) may be used to
specify a problem in which f xð Þ is maximized instead of minimized.

Upper and lower bounds are specified for all variables and constraints. This form allows full generality in
specifying various types of constraint. In particular, the jth constraint may be defined as an equality by
setting lj ¼ uj. If certain bounds are not present, the associated elements of l or u may be set to special

values that are treated as �1 or þ1.

The possible forms for the function f xð Þ are summarized in Table 1. The most general form for f xð Þ is

f xð Þ ¼ q þ cTxþ 1

2
xTHx ¼ q þ

Xn
j¼1

cjxj þ
1

2

Xn
i¼1

Xn
j¼1

xiHijxj

where q is a constant, c is a constant n vector and H is a constant symmetric n by n matrix with elements

Hij

� �
. In this form, f is a quadratic function of x and (1) is known as a quadratic program (QP).

E04NQF is suitable for all convex quadratic programs. The defining feature of a convex QP is that the

matrix H must be positive semi-definite, i.e., it must satisfy xTHx � 0 for all x. If not, f xð Þ is nonconvex
and E04NQF will terminate with the error indicator IFAIL ¼ 11. If f xð Þ is nonconvex it may be more
appropriate to call E04VHF instead.

Problem type Objective function f xð Þ Hessian matrix H

FP Not applicable q ¼ c ¼ H ¼ 0

LP q þ cTx H ¼ 0

QP q þ cTxþ 1
2
xTHx Symmetric positive semi-definite

Table 1
Choices for the objective function f xð Þ

If H ¼ 0, then f xð Þ ¼ q þ cTx and the problem is known as a linear program (LP). In this case, rather
than defining an H with zero elements, you can define H to have no columns by setting NCOLH ¼ 0 (see
Section 5).

If H ¼ 0, q ¼ 0, and c ¼ 0, there is no objective function and the problem is a feasible point problem

(FP), which is equivalent to finding a point that satisfies the constraints on x. In the situation where no
feasible point exists, several options are available for finding a point that minimizes the constraint
violations (see the optional parameter Elastic Mode in Section 11.2).

E04NQF is suitable for large LPs and QPs in which the matrix A is sparse, i.e., when there are sufficiently
many zero elements in A to justify storing them implicitly. The matrix A is input to E04NQF by means of
the three array parameters ACOL, INDA and LOCA. This allows the user to specify the pattern of non-
zero elements in A.

E04NQF exploits structure or sparsity in H by requiring H to be defined implicitly in a subroutine that
computes the product Hx for any given vector x. In many cases, the product Hx can be computed very
efficiently for any given x, e.g., H may be a sparse matrix, or a sum of matrices of rank-one.

For problems in which A can be treated as a dense matrix, it is usually more efficient to use
E04MFF=E04MFA, E04NCF=E04NCA or E04NFF=E04NFA.
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There is considerable flexibility allowed in the definition of f xð Þ in Table 1. The vector c defining the

linear term cTx can be input in three ways: as a sparse row of A; as an explicit dense vector c; or as both a

sparse row and an explicit vector (in which case, cTx will be the sum of two linear terms). When stored in
A, c is the IOBJth row of A, which is known as the objective row. The objective row must always be a
free row of A in the sense that its lower and upper bounds must be �1 and þ1. Storing c as part of A
is recommended if c is a sparse vector. Storing c as an explicit vector is recommended for a sequence of
problems, each with a different objective (see parameters C and LENC).

The upper and lower bounds on the m elements of Ax are said to define the general constraints of the
problem. Internally, E04NQF converts the general constraints to equalities by introducing a set of slack

variables s, where s ¼ s1; s2; . . . ; smð ÞT . For example, the linear constraint 5 � 2x1 þ 3x2 � þ1 is
replaced by 2x1 þ 3x2 � s1 ¼ 0, together with the bounded slack 5 � s1 � þ1. The problem defined by
(1) can therefore be re-written in the following equivalent form:

minimize
x2Rn;s2Rm

f xð Þ subject to Ax� s ¼ 0, l � x
s

� �
� u.

Since the slack variables s are subject to the same upper and lower bounds as the elements of Ax, the
bounds on x and Ax can simply be thought of as bounds on the combined vector x; sð Þ. (In order to
indicate their special role in QP problems, the original variables x are sometimes known as ‘column
variables’, and the slack variables s are known as ‘row variables’.)

Each LP or QP problem is solved using an active-set method. This is an iterative procedure with two
phases: a feasibility phase (Phase 1), in which the sum of infeasibilities is minimized to find a feasible
point; and an optimality phase (Phase 2), in which f xð Þ is minimized (or maximimized) by constructing a
sequence of iterations that lies within the feasible region.

Phase 1 involves solving a linear program of the form

Phase 1

minimize
x;v;w

Xnþm

j¼1

vj þ wj

� �
subject to Ax� s ¼ 0, ‘ � x

s

� �
�vþ w � u, v � 0, w � 0

which is equivalent to minimizing the sum of the constraint violations. If the constraints are feasible (i.e.,
at least one feasible point exists), eventually a point will be found at which both v and w are zero. The
associated value of x; sð Þ satisfies the original constraints and is used as the starting point for the Phase 2
iterations for minimizing f xð Þ.
If the constraints are infeasible (i.e., v 6¼ 0 or w 6¼ 0 at the end of Phase 1), no solution exists for (1) and
the user has the option of either terminating or continuing in so-called Elastic mode (see the discussion of
the optional parameter Elastic Mode in Section 11.2). In elastic mode, a ‘relaxed’ or ‘perturbed’ problem
is solved in which f xð Þ is minimized while allowing some of the bounds to become ‘elastic’, i.e., to
change from their specified values. Variables subject to elastic bounds are known as elastic variables. An
elastic variable is free to violate one or both of its original upper or lower bounds. The user is able to
assign which bounds will become elastic if elastic mode is ever started (see the parameter HELAST in
Section 5).

To make the relaxed problem meaningful, E04NQF minimizes f xð Þ while (in some sense) finding the
‘smallest’ violation of the elastic variables. In the situation where all the variables are elastic, the relaxed
problem has the form

Phase 2 (�)

minimize
x;v;w

f xð Þ þ �
Xnþm

j¼1

vj þ wj

� �
subject to Ax� s ¼ 0, ‘ � x

s

� �
� vþ w � u, v � 0, w � 0,

where � is a nonnegative parameter known as the elastic weight (see the optional parameter Elastic

Weight in Section 11.2), and f xð Þ þ �
P
j

vj þ wj

� �
is called the composite objective. In the more general

situation where only a subset of the bounds are elastic, the v’s and w’s for the non-elastic bounds are fixed
at zero.
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The elastic weight can be chosen to make the composite objective behave like either the original objective
f xð Þ or the sum of infeasibilities. If � ¼ 0, E04NQF will attempt to minimize f subject to the (true) upper
and lower bounds on the nonelastic variables (and declare the problem infeasible if the nonelastic variables
cannot be made feasible).

At the other extreme, choosing � sufficiently large, will have the effect of minimizing the sum of the
violations of the elastic variables subject to the original constraints on the non-elastic variables. Choosing
a large value of the elastic weight is useful for defining a ‘least-infeasible’ point for an infeasible problem.

In Phase 1 and elastic mode, all calculations involving v and w are done implicitly in the sense that an
elastic variable xj is allowed to violate its lower bound (say) and an explicit value of v can be recovered as

vj ¼ lj � xj.

A constraint is said to be active or binding at x if the associated element of either x or Ax is equal to one
of its upper or lower bounds. Since an active constraint in Ax has its associated slack variable at a bound,
the status of both simple and general upper and lower bounds can be conveniently described in terms of
the status of the variables x; sð Þ. A variable is said to be nonbasic if it is temporarily fixed at its upper or
lower bound. It follows that regarding a general constraint as being active is equivalent to thinking of its
associated slack as being nonbasic.

At each iteration of an active-set method, the constraints Ax� s ¼ 0 are (conceptually) partitioned into the
form

BxB þ SxS þNxN ¼ 0,

where xN consists of the nonbasic elements of x; sð Þ and the basis matrix B is square and non-singular.
The elements of xB and xS are called the basic and superbasic variables respectively; with xN they are a
permutation of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their upper or lower bounds, while the nonbasic variables will be equal to one of their
bounds. At each iteration, xS is regarded as a set of independent variables that are free to move in any
desired direction, namely one that will improve the value of the objective function (or sum of
infeasibilities). The basic variables are then adjusted in order to ensure that x; sð Þ continues to satisfy
Ax� s ¼ 0. The number of superbasic variables (nS say) therefore indicates the number of degrees of
freedom remaining after the constraints have been satisfied. In broad terms, nS is a measure of how

nonlinear the problem is. In particular, nS will always be zero for FP and LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic
and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax� s ¼ 0 is a dual variable �i. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj (also known as a reduced cost). The reduced

gradients for the variables x are the quantities g�AT�, where g is the gradient of the QP objective
function; and the reduced gradients for the slack variables s are the dual variables �. The QP subproblem
is optimal if dj � 0 for all nonbasic variables at their lower bounds, dj � 0 for all nonbasic variables at

their upper bounds and dj ¼ 0 for all superbasic variables. In practice, an approximate QP solution is

found by slightly relaxing these conditions on dj (see the description of the optional parameter Optimality

Tolerance in Section 11.2).

The process of computing and comparing reduced gradients is known as pricing (a term first introduced in
the context of the simplex method for linear programming). To ‘price’ a nonbasic variable xj means that

the reduced gradient dj associated with the relevant active upper or lower bound on xj is computed via the

formula dj ¼ gj � aj
T�, where aj is the jth column of A � I

� �
. (The variable selected by such a

process and the corresponding value of dj (i.e., its reduced gradient) are the quantities +SBS and dj in the

monitoring file output; see Section 12.) If A has significantly more columns than rows (i.e., n � m),
pricing can be computationally expensive. In this case, a strategy known as partial pricing can be used to
compute and compare only a subset of the dj’s.

E04NQF is based on SQOPT, which is part of the SNOPT package described in Gill et al. (1999). It uses
stable numerical methods throughout and includes a reliable basis package (for maintaining sparse LU
factors of the basis matrix B), a practical anti-degeneracy procedure, efficient handling of linear constraints

|
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and bounds on the variables (by an active-set strategy), as well as automatic scaling of the constraints.
Further details can be found in Section 10.
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5 Parameters

The first n entries of the parameters BL, BU, HS and X refer to the variables x. The last m entries refer to
the slacks s.

1: START – CHARACTER*1 Input

On entry: indicates how a starting basis (and certain other items) are to be obtained.

If START ¼ C (Cold Start), then an internal Crash procedure will be used to choose an
initial Basis matrix, unless a basis file is provided via Old Basis File, Load File or Insert
File (see Section 11.2);
if START ¼ B (Basis file), is the same as START ¼ C but is more meaningful when a
basis file is given (see Old Basis File in Section 11.2);
if START ¼ W (Warm Start), then a basis is already defined in HS (probably from a
previous call).

Constraint: START ¼ C , B or W.

2: QPHX – SUBROUTINE, supplied by the NAG Fortran Library or the user. External Procedure

For QP problems, you must supply a version of QPHX to compute the matrix product Hx for the
given vector x. If H has rows and columns of zeros, it is most efficient to order the variables

x ¼ y zð ÞT so that

Hx ¼ H1 0

0 0

� �
y
z

� �
¼ H1y

0

� �
,

where the nonlinear variables y appear first as shown. The number of columns of H1 is specified in
NCOLH. For FP and LP problems, QPHX will never be called by E04NQF and hence QPHX may
be the dummy routine E04NSH.
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Its specification is:

SUBROUTINE QPHX (NCOLH, X, HX, NSTATE, CUSER, IUSER, RUSER)

INTEGER NCOLH, NSTATE, IUSER(*)

double precision X(NCOLH), HX(NCOLH), RUSER(*)
CHARACTER*8 CUSER(*)

1: NCOLH – INTEGER Input

On entry: this is the same parameter NCOLH as supplied to E04NQF (see above).

2: XðNCOLHÞ – double precision array Input

On entry: the first NCOLH elements of the vector x.

3: HXðNCOLHÞ – double precision array Output

On exit: the product Hx.

4: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, then E04NQF is calling QPHX for the first time. This
parameter setting allows you to save computation time if certain data must be read or
calculated only once. To preserve this data for subsequent calculation place it in one of
CUSER, RUSER or IUSER. If NSTATE ¼ 0 there is nothing special about the current
call of QPHX. If NSTATE � 2, then E04NQF is calling QPHX for the last time. This
parameter setting allows you to perform some additional computation on the final solution.
On the last call of QPHX, if NSTATE ¼ 2, the current x is optimal; if NSTATE ¼ 3, the
problem appears to be infeasible; if NSTATE ¼ 4, the problem appears to be unbounded;
and if NSTATE ¼ 5, the iterations limit was reached.

5: CUSERð�Þ – CHARACTER*8 array User Workspace

6: IUSERð�Þ – INTEGER array User Workspace

7: RUSERð�Þ – double precision array User Workspace

QPHX is called from E04NQF with the parameters CUSER, IUSER and RUSER as
supplied to E04NQF. These parameters are not touched by E04NQF. The array
parameters can be used; as an alternative to using COMMON.

QPHX must be declared as EXTERNAL in the (sub)program from which E04NQF is called.
Parameters denoted as Input must not be changed by this procedure.

3: M – INTEGER Input

On entry: m, the number of general linear constraints (or slacks). This is the number of rows in A,
including the free row (if any; see IOBJ below).

Constraint: M � 1.

4: N – INTEGER Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the linear
constraint matrix A.

Constraint: N � 1.

5: NE – INTEGER Input

On entry: the number of non-zero elements in A.

Constraint: 1 � NE � N�M.
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6: NNAME – INTEGER Input

On entry: the number of column (i.e., variable) and row names supplied in the array NAMES.

If NNAME ¼ 1, there are no names. Default names will be used in the printed output;
if NNAME ¼ NþM, all names must be supplied.

Constraint: NNAME ¼ 1 or NþM.

7: LENC – INTEGER Input

On entry: the number of elements in the constant objective vector c.

Constraint: 0 � LENC � N.

8: NCOLH – INTEGER Input

On entry: nH , the number of leading non-zero columns of the Hessian matrix H. For FP and LP
problems, NCOLH must be set to zero.

Constraint: 0 � NCOLH � N.

9: IOBJ – INTEGER Input

On entry: if IOBJ > 0, row IOBJ of A is a free row containing the non-zero elements of the vector

c appearing in the linear objective term cTx. If IOBJ ¼ 0, there is no free row, i.e., the problem is
either an FP problem, or a QP problem with c ¼ 0.

Constraint: 0 � IOBJ � M.

10: OBJADD – double precision Input

On entry: the constant q, to be added to the objective for printing purposes. Typically
OBJADD ¼ 0:0D0.

11: PROB – CHARACTER*8 Input

On entry: the name for the problem. It is used in the printed solution and in some routines that
output Basis files. A blank name may be used.

12: ACOLðNEÞ – double precision array Input

On entry: the non-zero elements of A, ordered by increasing column index. Note that all elements
must be assigned a value in the calling program.

13: INDAðNEÞ – INTEGER array Input

On entry: INDAðiÞ must contain the row index of the non-zero element stored in ACOLðiÞ, for
i ¼ 1; 2; . . . ;NE. Thus a pair of values ACOLðkÞ; INDAðkÞð Þ contains a matrix element and its
corresponding row index.

If LENC > 0, the first LENC elements of ACOL and INDA belong to variables corresponding to
the constant objective term c.

If the problem has a quadratic objective, the first NCOLH columns of ACOL and INDA belong to
variables corresponding to the non-zero block of the QP Hessian. Subroutine QPHX knows about
these variables.

Note that the row indices for a column may be supplied in any order.

Constraint: 1 � INDAðiÞ � M, for i ¼ 1; 2; . . . ;NE.

14: LOCAðNþ 1Þ – INTEGER array Input

On entry: LOCAðjÞ must contain the index in ACOL and INDA of the start of the jth column, for
j ¼ 1; 2; . . . ;N. Thus for j ¼ 1 : n, the entries of column j are held in ACOLðk:lÞ and their
corresponding row indices are in INDAðk:lÞ, where k ¼ LOCAðjÞ and l ¼ LOCAðjþ 1Þ � 1. To
specify the jth column as empty, set LOCAðjÞ ¼ LOCAðjþ 1Þ. Note that the first and last
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elements of LOCA must be such that LOCAð1Þ ¼ 1 and LOCAðNþ 1Þ ¼ NEþ 1. If your
problem has no constraints, or just bounds on the variables, you may include a dummy ‘free’ row
with a single (zero) element by setting ACOL 1ð Þ ¼ 0:0, INDA 1ð Þ ¼ 1, LOCA 1ð Þ ¼ 1, and
LOCA jð Þ ¼ 2 for j ¼ 2 : nþ 1. This row is made ‘free’ by setting its bounds to be
BL nþ 1ð Þ ¼ �bigbnd and BU nþ 1ð Þ ¼ bigbnd.

Constraints:

LOCAð1Þ ¼ 1;
LOCAðjÞ � 1, for j ¼ 2; 3; . . . ;N;
LOCAðNþ 1Þ ¼ NEþ 1;
0 � LOCAðjþ 1Þ � LOCAðjÞ � M, for j ¼ 1; 2; . . . ;N.

15: BLðNþMÞ – double precision array Input/Output

On entry: l, the lower bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, and the next M elements the
bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To fix the jth
variable, set BL jð Þ ¼ BU jð Þ ¼ �, say, where �j j < bigbnd. To specify a non-existent lower bound
(i.e., lj ¼ �1), set BLðjÞ � �bigbnd, where bigbnd is the value of the optional parameter Infinite

Bound Size (see Section 11.2). To specify the jth constraint as an equality, set
BLðnþ jÞ ¼ BUðnþ jÞ ¼ �, say, where �j j < bigbnd. Note that the lower bound corresponding
to the free row must be set to �1 and stored in BLðNþ IOBJÞ.
On exit: used as internal workspace prior to being restored and hence is unchanged.

Constraint: if IOBJ > 0, BLðNþ IOBJÞ � �bigbnd

(See also the description for BU below.).

16: BUðNþMÞ – double precision array Input/Output

On entry: u, the upper bounds for all the variables and general constraints, in the following order.
The first N elements of BU must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To specify a
non-existent upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd. Note that the upper bound

corresponding to the free row must be set to þ1 and stored in BUðNþ IOBJÞ.
On exit: used as internal workspace prior to being restored and hence is unchanged.

Constraints:

if IOBJ > 0, BU Nþ IOBJð Þ � bigbnd;
BLðiÞ � BUðiÞ otherwise.

17: Cð�Þ – double precision array Input

On entry: contains the explicit objective vector c (if any). If the problem is of type FP , or if
LENC ¼ 0, then C is not referenced. (In that case, C may be dimensioned (1), or it could be any
convenient array.)

18: NAMESðNNAMEÞ – CHARACTER*8 array Input

On entry: the optional column and row names, respectively.

If NNAME ¼ 1, NAMES is not referenced and the printed output will use default names for
the columns and rows;
if NNAME ¼ NþM, the first N elements must contain the names for the columns and the
next M elements must contain the names for the rows. Note that the name for the free row
(if any) must be stored in NAMESðNþ IOBJÞ.

19: HELASTðNþMÞ – INTEGER array Input

On entry: defines which variables are to be treated as being elastic in elastic mode. The allowed
values of HELAST are:
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HELAST jð Þ Status in elastic mode
0 variable j is non-elastic and cannot be infeasible
1 variable j can violate its lower bound
2 variable j can violate its upper bound
3 variable j can violate either its lower or upper bound

HELAST need not be assigned if optional parameter Elastic Mode ¼ 0.

Constraint: HELAST jð Þ ¼ 0; 1; 2; 3 if Elastic Mode 6¼ 0, for j ¼ 1; 2; . . . ;NþM.

20: HSðNþMÞ – INTEGER array Input/Output

On entry: if START ¼ C or B , and a Basis file of some sort is to be input (an Old Basis file,
Insert file or Load file), then HS and X need not be set at all.

If START ¼ C and there is no basis file, the first N elements of HS and X must specify the initial
states and values, respectively, of the variables x. (The slacks s need not be initialized.) An
internal Crash procedure is then used to select an initial basis matrix B. The initial basis matrix will
be triangular (neglecting certain small elements in each column). It is chosen from various rows
and columns of A �Ið Þ. Possible values for HSðjÞ are as follows:

HSðjÞ State of XðjÞ during Crash procedure

0 or 1 Eligible for the basis
2 Ignored
3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information,
you may set HSðjÞ ¼ 0 and XðjÞ ¼ 0:0, for j ¼ 1; 2; . . . ;N. All variables will then be eligible for
the initial basis. Less trivially, to say that the jth variable will probably be equal to one of its
bounds, set HSðjÞ ¼ 4 and XðjÞ ¼ BLðjÞ or HSðjÞ ¼ 5 and XðjÞ ¼ BUðjÞ as appropriate.

Following the Crash procedure, variables for which HSðjÞ ¼ 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value XðjÞ if
BLðjÞ � XðjÞ � BUðjÞ, or at the value BLðjÞ or BUðjÞ closest to XðjÞ.
If START ¼ W, HS and X must specify the initial states and values, respectively, of the variables
and slacks x; sð Þ. If E04NQF has been called previously with the same values of N and M, HS
already contains satisfactory information.

Constraints:

if START ¼ C , 0 � HSðjÞ � 5 for j ¼ 1; 2; . . . ;N;
if START ¼ W, 0 � HSðjÞ � 3 for j ¼ 1; 2; . . . ;NþM.

On exit: the final states of the variables and slacks x; sð Þ. The significance of each possible value of
HSðjÞ is as follows:

HSðjÞ State of variable j Normal value of XðjÞ
0 Nonbasic BLðjÞ
1 Nonbasic BUðjÞ
2 Superbasic Between BLðjÞ and BUðjÞ
3 Basic Between BLðjÞ and BUðjÞ

If NINF ¼ 0, basic and superbasic variables may be outside their bounds by as much as the value
of the optional parameter Feasibility Tolerance (see Section 11.2). Note that unless the optional
parameter Scale Option ¼ 0 (see Section 11.2) is specified, the Feasibility Tolerance applies to the
variables of the scaled problem. In this case, the variables of the original problem may be as much
as 0:1 outside their bounds, but this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as the
Feasibility Tolerance, and there may be some nonbasic variables for which XðjÞ lies strictly
between its bounds.
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If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if Scale Option ¼ 0).

21: XðNþMÞ – double precision array Input/Output

On entry: the initial values of the variables x, if START ¼ W and slacks s, i.e., x; sð Þ. (See the
description for HS above.)

On exit: the final values of the variables and slacks x; sð Þ.

22: PIðMÞ – double precision array Output

On exit: contains the dual variables � (a set of Lagrange multipliers (shadow prices) for the general
constraints).

23: RCðNþMÞ – double precision array Output

On exit: the first N elements contain the reduced costs, g� A �Ið ÞT�, where g is the gradient of
the objective if X is feasible (or the gradient of the Phase 1 objective otherwise). The last M entries
are �.

24: NS – INTEGER Input/Output

On entry: nS , the number of superbasics. For QP problems, NS need not be specified if START ¼
C , but must retain its value from a previous call when START ¼ W. For FP and LP problems,
NS need not be initialized.

On exit: the final number of superbasics. This will be zero for FP and LP problems.

25: NINF – INTEGER Output

On exit: the number of infeasibilities.

26: SINF – double precision Output

On exit: the sum of the scaled infeasibilities. This will be zero if NINF ¼ 0, and is most
meaningful when Scale Option ¼ 0.

27: OBJ – double precision Output

On exit: the value of the objective function.

If NINF ¼ 0, OBJ includes the quadratic objective term 1
2
xTHx (if any);

if NINF > 0, OBJ is just the linear objective term cTx (if any).

For FP problems, OBJ is set to zero.

28: CWðLENCWÞ – CHARACTER*8 array Communication Array

29: LENCW – INTEGER Input

On entry: the dimension of the array CW as declared in the (sub)program from which E04NQF is
called.

Constraint: LENCW � 600.

30: IWðLENIWÞ – INTEGER array Communication Array

31: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04NQF is
called.

Constraint: LENIW � 600.
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32: RWðLENRWÞ – double precision array Communication Array

33: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04NQF is
called.

Constraint: LENRW � 600.

34: CUSERð�Þ – CHARACTER*8 array User Workspace

Note: the dimension of the array CUSER must be at least 1.

CUSER is not used by E04NQF, but is passed directly to the external procedure QPHX and may be
used to pass information to that routine.

35: IUSERð�Þ – INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

IUSER is not used by E04NQF, but is passed directly to the external procedure QPHX and may be
used to pass information to that routine.

36: RUSERð�Þ – double precision array User Workspace

Note: the dimension of the array RUSER must be at least 1.

RUSER is not used by E04NQF, but is passed directly to the external procedure QPHX and may be
used to pass information to that routine.

37: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On final exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6). An exit value of 0 does
not imply that the objective function was convex.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04NQF returns with IFAIL ¼ 0 if the reduced gradient (Norm rg; see Section 8.1) is negligible,
the Lagrange multipliers (Lagr Mult; see Section 8.1) are optimal and x satisfies the constraints to
the accuracy requested by the value of the optional parameter Feasibility Tolerance (see Section
11.2).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04NPF has not been called or at least one of LENCW, LENIW and
LENRW is less than 600.

IFAIL ¼ 2

An input parameter is invalid.

IFAIL ¼ 3

The requested accuracy could not be achieved.
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IFAIL ¼ 4

Weak solution found. The final x is not unique.

This exit will occur when

(i) the problem is feasible;

(ii) the reduced gradient is negligible;

(iii) the Lagrange multipliers are optimal; or

(iv) the reduced Hessian is singular or there are some very small multipliers.

This exit cannot occur if H is positive-definite (i.e., f xð Þ is strictly convex).

IFAIL ¼ 5

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to within
the value of the optional parameter Feasibility Tolerance (see Section 11.2).

Feasibility is measured with respect to the upper and lower bounds on the variables. The message
tells us that among all the points satisfying the general constraints Ax� s ¼ 0, there is apparently
no point that satisfies the bounds on x and s. Violations as small as the Feasibility Tolerance (see
Section 11.2) are ignored, but at least one component of x or s violates a bound by more than the
tolerance.

Note: although the objective function is the sum of infeasibilities (when NINF > 0), this sum will
not necessarily have been minimized when Elastic Mode ¼ 1.

IFAIL ¼ 6

The problem is unbounded (or badly scaled). For a minimization problem, the objective function is
not bounded below in the feasible region.

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can apparently be increased or decreased by an arbitrary amount without causing a basic variable to
violate a bound. A message will give the index of the nonbasic variable. Consider adding an upper
or lower bound to the variable. Also, examine the constraints that have non-zeros in the associated
column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous
indication of unboundedness. Consider using the Scale Option (see Section 11.2).

IFAIL ¼ 7

Too many iterations. The value of the optional parameter Iteration Limit (see Section 11.2) is too
small.

The Iterations limit was exceeded before the required solution could be found. Check the iteration
log to be sure that progress was being made. If so, restart the run using a basis file that was saved
at the end of the run.

IFAIL ¼ 8

The reduced Hessian matrix ZTHZ (see Section 10.2) exceeds its assigned dimension. The value
of the optional parameter Superbasics Limit (see Section 11.2) is too small.

In general, raise the Superbasics Limit (see Section 11.2) s by a reasonable amount, bearing in

mind the storage needed for the reduced Hessian is 1
2
s2.

IFAIL ¼ 9

The basis is singular after several attempts to factorize it (adding slacks where necessary). Either
the problem is badly scaled or the value of the optional parameter LU Factor Tolerance (see
Section 11.2) is too large.
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IFAIL ¼ 10

Numerical error in trying to satisfy the general constraints. The basis is very ill-conditioned.

An LU factorization of the basis has just been obtained and used to recompute the basic variables
xB, given the present values of the superbasic and nonbasic variables. However, a row check has
revealed that the resulting solution does not satisfy the current constraints Ax� s ¼ 0 sufficiently
well.

This probably means that the current basis is very ill-conditioned. Request the Scale Option (see
Section 11.2) if there are any linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic growth
may occur in the factor U. Consult the description of Umax, Umin and Growth in Section 12, and
set the LU Factor Tolerance to 2.0 (or possibly even smaller, but not less than 1.0).

IFAIL ¼ 11

The Hessian matrix H appears to be indefinite. This sometimes occurs because the values of the
optional parameters LU Factor Tolerance and LU Update Tolerance (see Section 11.2) are too
large. Check also that subroutine QPHX has been coded correctly and that all relevant elements of
Hx have been assigned their correct values.

IFAIL ¼ 12

Internal memory allocation failed when attempting to obtain the required workspace. Please contact
NAG.

IFAIL ¼ 13

Internal memory allocation was insufficient. Please contact NAG.

IFAIL ¼ 14

An error has occurred in the basis package, perhaps indicating incorrect setup of arrays INDA and
LOCA. Set the optional argument Print File (see Section 11.2) and examine the output carefully
for further information.

IFAIL ¼ 15

An unexpected error has occurred. Set the optional argument Print File (see Section 11.2) and
examine the output carefully for further information.

7 Accuracy

The routine implements a numerically stable active-set strategy and returns solutions that are as accurate as
the condition of the problem warrants on the machine.

8 Further Comments

This section contains a description of the printed output.

8.1 Description of the Printed Output

If Print Level > 0, one line of information is output to the Print File every kth iteration, where k is the
specified Print Frequency. A heading is printed before the first such line following a basis factorization.
The heading contains the items described below. In this description, a pricing operation is defined to be
the process by which one or more nonbasic variables are selected to become superbasic (in addition to
those already in the superbasic set). The variable selected will be denoted by jq. If the problem is purely
linear, variable jq will usually become basic immediately (unless it should happen to reach its opposite
bound and return to the nonbasic set).
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If Partial Price is in effect, variable jq is selected from App or Ipp, the ppth segments of the constraint

matrix A � I
� �

.

Label Description

Itn is the iteration count.

pp is the optional indicator. The variable selected by the last pricing operation came
from the ppth partition of A and �I. Note that pp is reset to zero whenever the
basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by the
pricing operation at the start of the current iteration.

Algebraically, dj is dj ¼ gj � �Taj, for j ¼ jq where gj is the gradient of the

current objective function, � is the vector of dual variables, and aj is the jth column

of the constraint matrix A � I
� �

.

Note that dj is the norm of the reduced-gradient vector at the start of the iteration,
just after the pricing operation.

+SBS is the variable jq selected by the pricing operation to be added to the superbasic set.

-SBS is the variable chosen to leave the superbasic set. It has become basic if the entry
under -B is non-zero, otherwise it becomes nonbasic.

-BS is the variable removed from the basis (if any) to become nonbasic.

-B is the variable chosen to leave the set of basics (if any) in a special basic $
superbasic swap. The entry under -SBS has become basic if this entry is non-zero,
and nonbasic otherwise. The swap is done to ensure that there are no superbasic
slacks.

Step is the value of the step length � taken along the current search direction p. The
variables x have just been changed to xþ �p. If a variable is made superbasic
during the current iteration (i.e., +SBS is positive), Step will be the step to the
nearest bound. During the optimality phase, the step can be greater than unity only
if the reduced Hessian is not positive-definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column of

the constraint matrix A� Ið Þ) replaces the rth column of the basis matrix B.
Wherever possible, Step is chosen so as to avoid extremely small values of Pivot
(since they may cause the basis to be nearly singular). In extreme cases, it may be
necessary to increase the value of the optional parameter Pivot Tolerance (see
Section 11.2) to exclude very small elements of y from consideration during the
computation of Step.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives the
sum of the magnitudes of constraint violations. If x is feasible, Objective is the
value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the multipliers
implies that no feasible point exists.

L is the number of non-zeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , this entry contains lenL (see Section 12). Further non-zeros
are added to L when various columns of B are later replaced. (Thus, L increases
monotonically.)

|

|
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U is the number of non-zeros in the basis factor U. Immediately after a basis
factorization B ¼ LU , this entry contains lenU (see Section 12). As columns of B
are replaced, the matrix U is maintained explicitly (in sparse form). The value of U
may fluctuate up or down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U. This includes the number of compressions needed during the previous basis
factorization. Normally, Ncp should increase very slowly.

The following will be output if the problem is QP or if the superbasic is non-empty (i.e., if the current
solution is nonbasic).

Label Description

Norm rg is dSk k, the Euclidean norm of the reduced gradient (see Section 10.3). During the
optimality phase, this norm will be approximately zero after a unit step.

Ns is the current number of superbasic variables.

Cond Hz is a lower bound on the condition number of the reduced Hessian (see Section
10.2). The larger this number, the more difficult the problem. Attention should be
given to the scaling of the variables and the constraints to guard against high values
of Cond Hz.

9 Example

To minimize the quadratic function f xð Þ ¼ cTxþ 1
2
xTHx, where

c ¼ �200:0;�2000:0;�2000:0;�2000:0;�2000:0; 400:0; 400:0ð ÞT

H ¼

2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 2 0 0 0

0 0 2 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 2

0 0 0 0 0 2 2

0
BBBBBBBB@

1
CCCCCCCCA

subject to the bounds

0 � x1 � 200

0 � x2 � 2500

400 � x3 � 800

100 � x4 � 700

0 � x5 � 1500

0 � x6

0 � x7

and to the linear constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ 2000

0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � 60

0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � 100

0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � 40

0:02x1 þ 0:03x2 þ 0:01x5 � 30

1500 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
250 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 300
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The initial point, which is infeasible, is

x0 ¼ 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0ð ÞT .
The optimal solution (to five figures) is

x� ¼ 0:0; 349:40; 648:85; 172:85; 407:52; 271:36; 150:02ð ÞT .
One bound constraint and four linear constraints are active at the solution. Note that the Hessian matrix H
is positive semi-definite.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the

Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,

the results produced may not be identical for all implementations.

* E04NQF Example Program Text
* Mark 21 Release. NAG Copyright 2004.

IMPLICIT NONE
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, MMAX, NEMAX
PARAMETER (NMAX=100,MMAX=100,NEMAX=100)
INTEGER LENCW, LENIW, LENRW
PARAMETER (LENCW=600,LENIW=600,LENRW=600)

* .. Local Scalars ..
DOUBLE PRECISION OBJ, OBJADD, SINF
INTEGER I, ICOL, IFAIL, IOBJ, J, JCOL, LENC, M, N, NCOLH,

+ NE, NINF, NNAME, NS
CHARACTER START
CHARACTER*8 PROB

* .. Local Arrays ..
DOUBLE PRECISION ACOL(NEMAX), BL(NMAX+MMAX), BU(NMAX+MMAX), C(1),

+ PI(MMAX), RC(NMAX+MMAX), RUSER(1), RW(LENRW),
+ X(NMAX+MMAX)
INTEGER HELAST(NMAX+MMAX), HS(NMAX+MMAX), INDA(NEMAX),

+ IUSER(1), IW(LENIW), LOCA(NMAX+1)
CHARACTER*8 CUSER(1), CW(LENCW), NAMES(NMAX+MMAX)

* .. External Subroutines ..
EXTERNAL E04NPF, E04NQF, E04NSF, E04NTF, QPHX

* .. Executable Statements ..
WRITE (NOUT,*) ’E04NQF Example Program Results’

* Skip heading in data file.
READ (NIN,*)
READ (NIN,*) N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN

*
* Read NE, IOBJ, NCOLH, START and NNAME from data file.

READ (NIN,*) NE, IOBJ, NCOLH, START, NNAME
*
* Read NAMES from data file.

READ (NIN,*) (NAMES(I),I=1,NNAME)
*
* Read the matrix ACOL from data file. Set up LOCA.

JCOL = 1
LOCA(JCOL) = 1
DO 40 I = 1, NE

*
* Element ( INDA( I ), ICOL ) is stored in ACOL( I ).

READ (NIN,*) ACOL(I), INDA(I), ICOL
*

IF (ICOL.LT.JCOL) THEN
* Elements not ordered by increasing column index.

WRITE (NOUT,99999) ’Element in column’, ICOL,
+ ’ found after element in column’, JCOL, ’. Problem’,
+ ’ abandoned.’

STOP
ELSE IF (ICOL.EQ.JCOL+1) THEN
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* Index in ACOL of the start of the ICOL-th column equals I.
LOCA(ICOL) = I
JCOL = ICOL

ELSE IF (ICOL.GT.JCOL+1) THEN
* Index in ACOL of the start of the ICOL-th column equals I,
* but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
* corresponding elements of LOCA to I.

DO 20 J = JCOL + 1, ICOL - 1
LOCA(J) = I

20 CONTINUE
LOCA(ICOL) = I
JCOL = ICOL

END IF
40 CONTINUE

*
LOCA(N+1) = NE + 1

*
IF (N.GT.ICOL) THEN

* Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
* elements of LOCA accordingly.

DO 60 I = N, ICOL + 1, -1
LOCA(I) = LOCA(I+1)

60 CONTINUE
END IF

*
* Read BL, BU, HS and X from data file.

READ (NIN,*) (BL(I),I=1,N+M)
READ (NIN,*) (BU(I),I=1,N+M)
IF (START.EQ.’C’) THEN

READ (NIN,*) (HS(I),I=1,N)
ELSE IF (START.EQ.’W’) THEN

READ (NIN,*) (HS(I),I=1,N+M)
END IF
READ (NIN,*) (X(I),I=1,N)

*
* Call E04NPF to initialise E04NQF.

IFAIL = -1
CALL E04NPF(CW,LENCW,IW,LENIW,RW,LENRW,IFAIL)

*
* By default E04NQF does not print monitoring
* information. Set the print file unit or the summary
* file unit to get information.

CALL E04NTF(’Print file’,NOUT,CW,IW,RW,IFAIL)
*
* We have no explicit objective vector so set LENC = 0; the
* objective vector is stored in row IOBJ of ACOL.

LENC = 0
OBJADD = 0.0D0
PROB = ’ ’

*
* Do not allow any elastic variables (i.e. they cannot be
* infeasible). If we’d set optional argument "Elastic mode" to 0,
* we wouldn’t need to set the individual elements of array HELAST.

DO 80 I = 1, N + M
HELAST(I) = 0

80 CONTINUE
*
* Solve the QP problem.

IFAIL = -1
CALL E04NQF(START,QPHX,M,N,NE,NNAME,LENC,NCOLH,IOBJ,OBJADD,

+ PROB,ACOL,INDA,LOCA,BL,BU,C,NAMES,HELAST,HS,X,PI,
+ RC,NS,NINF,SINF,OBJ,CW,LENCW,IW,LENIW,RW,LENRW,
+ CUSER,IUSER,RUSER,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99998) IFAIL
IF (IFAIL.EQ.0) THEN

WRITE (NOUT,99997) OBJ
WRITE (NOUT,99996) (X(I),I=1,N)

END IF
*
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END IF
STOP

*
99999 FORMAT (1X,A,I5,A,I5,A,A)
99998 FORMAT (1X,’On exit from E04NQF, IFAIL = ’,I5)
99997 FORMAT (1X,’Final objective value = ’,1P,E11.3)
99996 FORMAT (1X,’Optimal X = ’,7F9.2)

END
*

SUBROUTINE QPHX(NCOLH,X,HX,NSTATE,CUSER,IUSER,RUSER)
* Routine to compute H*x. (In this version of QPHX, the Hessian
* matrix H is not referenced explicitly.)
* .. Parameters ..

DOUBLE PRECISION TWO
PARAMETER (TWO=2.0D+0)

* .. Scalar Arguments ..
INTEGER NCOLH, NSTATE

* .. Array Arguments ..
DOUBLE PRECISION HX(NCOLH), RUSER(*), X(NCOLH)
INTEGER IUSER(*)
CHARACTER*8 CUSER(*)

* .. Executable Statements ..
HX(1) = TWO*X(1)
HX(2) = TWO*X(2)
HX(3) = TWO*(X(3)+X(4))
HX(4) = HX(3)
HX(5) = TWO*X(5)
HX(6) = TWO*(X(6)+X(7))
HX(7) = HX(6)
RETURN
END

9.2 Program Data

E04NQF Example Program Data
7 8 : Values of N and M

48 8 7 ’C’ 15 : Values of NNZ, IOBJ, NCOLH, START and NNAME

’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ : End of array NAMES

0.02 7 1 : Sparse matrix A, ordered by increasing column index;
0.02 5 1 : each row contains ACOL(i), INDA(i), ICOL (= column index)
0.03 3 1 : The row indices may be in any order. In this example
1.00 1 1 : row 8 defines the linear objective term transpose(C)*X.
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
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0.04 2 4
-2000.00 8 4

0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 : End of matrix A

0.0 0.0 4.0E+02 1.0E+02 0.0 0.0
0.0 2.0E+03 -1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25
1.5E+03 2.5E+02 -1.0E+25 : End of lower bounds array BL

2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25
1.0E+25 2.0E+03 6.0E+01 1.0E+02 4.0E+01 3.0E+01
1.0E+25 3.0E+02 1.0E+25 : End of upper bounds array BU

0 0 0 0 0 0 0 : Initial array HS
0.0 0.0 0.0 0.0 0.0 0.0 0.0 : Initial vector X

9.3 Program Results

E04NQF Example Program Results

Parameters

==========

Files

-----

Solution file.......... 0 Old basis file ........ 0 (Print file)........... 6

Insert file............ 0 New basis file ........ 0 (Summary file)......... 0

Punch file............. 0 Backup basis file...... 0

Load file.............. 0 Dump file.............. 0

Frequencies

-----------

Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100

Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000

LP/QP Parameters

----------------

Minimize............... QPsolver Cholesky...... Cold start.............

Scale tolerance........ 0.900 Feasibility tolerance.. 1.00E-06 Iteration limit........ 10000

Scale option........... 2 Optimality tolerance... 1.00E-06 Print level............ 1

Crash tolerance........ 0.100 Pivot tolerance........ 2.04E-11 Partial price.......... 1

Crash option........... 3 Elastic weight......... 1.00E+00 Prtl price section ( A) 7

Elastic mode........... 1 Elastic objective...... 1 Prtl price section (-I) 8

QP objective

------------

Objective variables.... 7 Hessian columns........ 7 Superbasics limit...... 7

Nonlin Objective vars.. 7 Unbounded step size.... 1.00E+20

Linear Objective vars.. 0

Miscellaneous

-------------

LU factor tolerance.... 100.00 LU singularity tol..... 2.04E-11 Timing level........... 0

LU update tolerance.... 10.00 LU swap tolerance...... 1.03E-04 Debug level............ 0
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LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No

Nonlinear constraints 0 Linear constraints 8

Nonlinear variables 7 Linear variables 0

Jacobian variables 0 Objective variables 7

Total constraints 8 Total variables 7

Itn 1: Feasible constraints

E04NQF EXIT 0 -- finished successfully

E04NQF INFO 1 -- optimality conditions satisfied

Problem name

No. of iterations 9 Objective value -1.8477846771E+06

No. of Hessian products 16 Linear objective -2.9886903537E+06

Quadratic objective 1.1409056766E+06

No. of superbasics 2 No. of basic nonlinears 4

No. of degenerate steps 0 Percentage 0.00

Max x (scaled) 3 2.4E-01 Max pi (scaled) 6 4.7E+07

Max x 3 6.5E+02 Max pi 7 1.5E+04

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 6 1.3E-08

Max Primal infeas 0 0.0E+00 Max Dual infeas 9 3.8E-11

Name Objective Value -1.8477846771E+06

Status Optimal Soln Iteration 9 Superbasics 2

Section 1 - Rows

Number ...Row.. State ...Activity... Slack Activity ..Lower Limit. ..Upper Limit. .Dual Activity ..i

8 ..ROW1.. EQ 2000.00000 . 2000.00000 2000.00000 -12900.76766 1

9 ..ROW2.. BS 49.23160 -10.76840 None 60.00000 0.00000 2

10 ..ROW3.. UL 100.00000 . None 100.00000 -2324.86620 3

11 ..ROW4.. BS 32.07187 -7.92813 None 40.00000 . 4

12 ..ROW5.. BS 14.55719 -15.44281 None 30.00000 . 5

13 ..ROW6.. LL 1500.00000 . 1500.00000 None 14454.60290 6

14 ..ROW7.. LL 250.00000 . 250.00000 300.00000 14580.95432 7

15 ..COST.. BS -2988690.35370 -2988690.35370 None None -1.0 8

Section 2 - Columns

Number .Column. State ...Activity... .Obj Gradient. ..Lower Limit. ..Upper Limit. Reduced Gradnt m+j

1 ...X1... LL . -200.00000 . 200.00000 2360.67253 9

2 ...X2... BS 349.39923 -1301.20153 . 2500.00000 0.00000 10

3 ...X3... SBS 648.85342 -356.59829 400.00000 800.00000 0.00000 11

4 ...X4... SBS 172.84743 -356.59829 100.00000 700.00000 0.00000 12

5 ...X5... BS 407.52089 -1184.95822 . 1500.00000 0.00000 13

6 ...X6... BS 271.35624 1242.75804 . None 0.00000 14

7 ...X7... BS 150.02278 1242.75804 . None 0.00000 15

On exit from E04NQF, IFAIL = 0

Final objective value = -1.848E+06

Optimal X = 0.00 349.40 648.85 172.85 407.52 271.36 150.02

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed

algorithm description that may be needed in order to understand Sections 11 and 12. Section 11 describes the

optional parameters that may be set by calls to E04NRF, E04NSF, E04NTF and/or E04NUF. Section 12

describes the quantities that can be requested to monitor the course of the computation.
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10 Algorithmic Details

This section contains a description of the method used by E04NQF.

10.1 Overview

E04NQF is based on an inertia-controlling method that maintains a Cholesky factorization of the reduced
Hessian (see below). The method is similar to that of Gill and Murray (1978), and is described in detail by
Gill et al. (1991). Here we briefly summarize the main features of the method. Where possible, explicit
reference is made to the names of variables that are parameters of the routine or appear in the printed
output.

The method used has two distinct phases: finding an initial feasible point by minimizing the sum of
infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible
region (the optimality phase). The computations in both phases are performed by the same subroutines.
The two-phase nature of the algorithm is reflected by changing the function being minimized from the sum
of infeasibilities (the printed quantity Sinf; see Section 12) to the quadratic objective function (the printed
quantity Objective; see Section 12).

In general, an iterative process is required to solve a quadratic program. Given an iterate x; sð Þ in both the
original variables x and the slack variables s, a new iterate �xx; �ssð Þ is defined by

�xx
�ss

� �
¼ x

s

� �
þ �p, ð2Þ

where the step length � is a non-negative scalar (the printed quantity Step; see Section 12), and p is called
the search direction. (For simplicity, we shall consider a typical iteration and avoid reference to the index
of the iteration.) Once an iterate is feasible (i.e., satisfies the constraints), all subsequent iterates remain
feasible.

10.2 Definition of the Working Set and Search Direction

At each iterate x; sð Þ, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the value of the optional parameter Feasibility Tolerance;
see Section 11.2). The working set is the current prediction of the constraints that hold with equality at a
solution of the LP or QP problem. Let mW denote the number of constraints in the working set (including
bounds), and let W denote the associated mW by nþmð Þ working set matrix consisting of the mW

gradients of the working set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value of the
step length. It follows that p must satisfy the identity

Wp ¼ 0. ð3Þ
This characterization allows p to be computed using any n by nZ full-rank matrix Z that spans the null
space of W . (Thus, nZ ¼ n�mW and WZ ¼ 0.) The null space matrix Z is defined from a sparse LU
factorization of part of W (see (6) and (7) below). The direction p will satisfy (3) if

p ¼ ZpZ , ð4Þ
where pZ is any nZ-vector.

The working set contains the constraints Ax� s ¼ 0 and a subset of the upper and lower bounds on the
variables x; sð Þ. Since the gradient of a bound constraint xj � lj or xj � uj is a vector of all zeros except

for �1 in position j, it follows that the working set matrix contains the rows of A � I
� �

and the unit

rows associated with the upper and lower bounds in the working set.

The working set matrix W can be represented in terms of a certain column partition of the matrix

A � I
� �

by (conceptually) partitioning the constraints Ax� s ¼ 0 so that

BxB þ SxS þNxN ¼ 0, ð5Þ
where B is a square non-singular basis and xB, xS and xN are the basic, superbasic and nonbasic variables

|

|
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respectively. The nonbasic variables are equal to their upper or lower bounds at x; sð Þ, and the superbasic
variables are independent variables that are chosen to improve the value of the current objective function.
The number of superbasic variables is nS (the printed quantity Ns; see Section 12). Given values of xN

and xS , the basic variables xB are adjusted so that x; sð Þ satisfies (5).

If P is a permutation matrix such that A � I
� �

P ¼ B S Nð Þ, then W satisfies

WP ¼ B S N
0 0 IN

� �
, ð6Þ

where IN is the identity matrix with the same number of columns as N .

The null space matrix Z is defined from a sparse LU factorization of part of W . In particular, Z is
maintained in ‘reduced gradient’ form, using the LUSOL package (see Gill et al. (1991)) to maintain
sparse LU factors of the basis matrix B that alters as the working set W changes. Given the permutation
P , the null space basis is given by

Z ¼ P
�B�1S

I
0

0
@

1
A. ð7Þ

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form Zv and

ZTg are obtained by solving with B or BT . This choice of Z implies that nZ , the number of ‘degrees of
freedom’ at x; sð Þ, is the same as nS , the number of superbasic variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian of the objective function:

gZ ¼ ZTg and HZ ¼ ZTHZ, ð8Þ
where g is the objective gradient at x; sð Þ. Roughly speaking, gZ and HZ describe the first and second
derivatives of an nS-dimensional unconstrained problem for the calculation of pZ . (The condition
estimator of HZ is the quantity Cond Hz in the monitoring file output; see Section 12.)

At each iteration, an upper triangular factor R is available such that HZ ¼ RTR. Normally, R is computed

from RTR ¼ ZTHZ at the start of the optimality phase and then updated as the QP working set changes.
For efficiency, the dimension of R should not be excessive (say, nS � 1000). This is guaranteed if the
number of nonlinear variables is ‘moderate’.

If the QP problem contains linear variables, H is positive semi-definite and R may be singular with at least
one zero diagonal element. However, an inertia-controlling strategy is used to ensure that only the last
diagonal element of R can be zero. (See Gill et al. (1991) for a discussion of a similar strategy for
indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a non-singular R. This
is equivalent to including temporary bound constraints in the working set. Thereafter, R can become
singular only when a constraint is deleted from the working set (in which case no further constraints are
deleted until R becomes non-singular).

10.3 Main Iteration

If the reduced gradient is zero, x; sð Þ is a constrained stationary point on the working set. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
elsewhere in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective function when the constraints in the working set
are treated as equalities. At a constrained stationary point, Lagrange multipliers � are defined from the
equations

WT� ¼ g xð Þ. ð9Þ
A Lagrange multiplier �j corresponding to an inequality constraint in the working set is said to be optimal

if �j � � when the associated constraint is at its upper bound, or if �j � �� when the associated

constraint is at its lower bound, where � depends on the value of the optional parameter Optimality
Tolerance (see Section 11.2). If a multiplier is non-optimal, the objective function (either the true
objective or the sum of infeasibilities) can be reduced by continuing the minimization with the

|
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corresponding constraint excluded from the working set. (This step is sometimes referred to as ‘deleting’ a
constraint from the working set.) If optimal multipliers occur during the feasibility phase but the sum of
infeasibilities is non-zero, there is no feasible point and the routine terminates immediately with
IFAIL ¼ 3 (see Section 6).

The special form (6) of the working set allows the multiplier vector �, the solution of (9), to be written in
terms of the vector

d ¼ g
0

� �
� A � I
� �T

� ¼ g�AT�
�

� �
, ð10Þ

where � satisfies the equations BT� ¼ gB, and gB denotes the basic elements of g. The elements of � are
the Lagrange multipliers �j associated with the equality constraints Ax� s ¼ 0. The vector dN of

nonbasic elements of d consists of the Lagrange multipliers �j associated with the upper and lower bound

constraints in the working set. The vector dS of superbasic elements of d is the reduced gradient gZ in (8).
The vector dB of basic elements of d is zero, by construction. (The Euclidean norm of dS and the final
values of dS , g and � are the quantities Norm rg, Reduced Gradnt, Obj Gradient and Dual Activity in
the monitoring file output; see Section 12.)

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction is
given by p ¼ ZpZ (see (7) and (11)). The step length is chosen to maintain feasibility with respect to the
satisfied constraints.

There are two possible choices for pZ, depending on whether or not HZ is singular. If HZ is non-singular,
R is non-singular and pZ in (4) is computed from the equations

RTRpZ ¼ �gZ , ð11Þ
where gZ is the reduced gradient at x. In this case, x; sð Þ þ p is the minimizer of the objective function
subject to the working set constraints being treated as equalities. If x; sð Þ þ p is feasible, � is defined to be
unity. In this case, the reduced gradient at �xx; �ssð Þ will be zero, and Lagrange multipliers are computed at
the next iteration. Otherwise, � is set to �M, the step to the ‘nearest’ constraint along p. This constraint is

then added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure that
only the last diagonal element of R is zero. (See Gill et al. (1991) for a discussion of a similar strategy for
indefinite quadratic programming.) In this case, pZ satisfies

pZ
THZpZ ¼ 0 and gZ

TpZ � 0, ð12Þ
which allows the objective function to be reduced by any step of the form x; sð Þ þ �p, where � > 0. The
vector p ¼ ZpZ is a direction of unbounded descent for the QP problem in the sense that the QP objective
is linear and decreases without bound along p. If no finite step of the form x; sð Þ þ �p (where � > 0)
reaches a constraint not in the working set, the QP problem is unbounded and the routine terminates
immediately with IFAIL ¼ 6 (see Section 6). Otherwise, � is defined as the maximum feasible step along
p and a constraint active at x; sð Þ þ �p is added to the working set for the next iteration.

E04NQF makes explicit allowance for infeasible constraints. Infeasible linear constraints are detected first
by solving a problem of the form

minimize
x;v;w

eT vþ wð Þ subject to l � x
Gx� vþ w

� �
� u, v � 0, w � 0, ð13Þ

where e ¼ 1; 1; . . . ; 1ð ÞT . This is equivalent to minimizing the sum of the general linear constraint
violations subject to the simple bounds. (In the linear programming literature, the approach is often called
elastic programming.)

10.4 Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null space matrix Z in (7) could be
arbitrarily high. To guard against this, the routine implements a ‘basis repair’ feature in which the LUSOL
package (see Gill et al. (1991)) is used to compute the rectangular factorization

|
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B Sð ÞT¼ LU , ð14Þ

returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance is set to

require PLPT
		 		

ij
� 2, and the permutation is used to define P in (6). It can be shown that Zk k is likely

to be little more than unity. Hence, Z should be well-conditioned regardless of the condition of W . This
feature is applied at the beginning of the optimality phase if a potential B� S ordering is known.

The EXPAND procedure (see Gill et al. (1989)) is used to reduce the possibility of cycling at a point
where the active constraints are nearly linearly dependent. Although there is no absolute guarantee that
cycling will not occur, the probability of cycling is extremely small (see Hall and McKinnon (1996)). The
main feature of EXPAND is that the feasibility tolerance is increased at the start of every iteration. This
allows a positive step to be taken at every iteration, perhaps at the expense of violating the bounds on
x; sð Þ by a small amount.

Suppose that the value of the optional parameter Feasibility Tolerance (see Section 11.2) is �. Over a
period of K iterations (where K is the value of the optional parameter Expand Frequency; see Section
11.2), the feasibility tolerance actually used by the routine (i.e., the working feasibility tolerance) increases
from 0:5� to � (in steps of 0:5�=K).

At certain stages the following ‘resetting procedure’ is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the number of non-
trivial adjustments made. If the count is non-zero, the basic variables are recomputed. Finally, the
working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of
iterations is started. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when the routine reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any non-trivial adjustments are
made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides a
potential choice of constraints to be added to the working set. All constraints at a distance � (where
� � �N) along p from the current point are then viewed as acceptable candidates for inclusion in the

working set. The constraint whose normal makes the largest angle with the search direction is added to the
working set. This strategy helps keep the basis matrix B well-conditioned.

11 Optional Parameters

Several optional parameters in E04NQF define choices in the problem specification or the algorithm logic.
In order to reduce the number of formal parameters of E04NQF these optional parameters have associated
default values that are appropriate for most problems. Therefore, the user need only specify those optional
parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or any, of the routines E04NRF, E04NSF, E04NTF
and E04NUF prior to a call to E04NQF, but after a call to E04NPF.

E04NRF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04NRF (IOPTNS, CW, IW, RW, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04NRF
should be consulted for a full description of this method of supplying optional parameters.
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E04NSF, E04NTF or E04NUF can be called to supply options directly, one call being necessary for each
optional parameter. E04NSF, E04NTF or E04NUF should be consulted for a full description of this
method of supplying optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04NQF (unless they define invalid values) and so remain in effect
for subsequent calls unless altered by the user.

11.1 Optional parameter checklist and default values

The following list gives the valid options. For each option, we give the keyword, any essential optional
qualifiers and the default value. A definition for each option can be found in Section 11.2. The minimum
abbreviation of each keyword is underlined. The qualifier may be omitted. The letters i and r denote
INTEGER and double precision values required with certain options. The default value of an option is
used whenever the condition ij j � 100000000 is satisfied. The number � is a generic notation for machine

precision (see X02AJF).

Optional Parameters Default Values

Backup Basis File Default ¼ 0
Check Frequency Default ¼ 60
Crash Option Default ¼ 3
Crash Tolerance Default ¼ 0:1
Defaults
Dump File Default ¼ 0
Elastic Mode Default ¼ 1
Elastic Objective Default ¼ 1
Elastic Weight Default ¼ 1:0
Expand Frequency Default ¼ 10000
Factorisation Frequency Default ¼ 100 LPð Þ or 50 QPð Þ
Feasibility Tolerance Default ¼ 10�6

Infinite Bound Size Default ¼ 1020

Insert File Default ¼ 0
Iteration Limit Default ¼ max 10000;mð Þ
Iters
Itns
List Default ¼ Nolist
Load File Default ¼ 0
LU Factor Tolerance Default ¼ 100:0
LU Singularity Tolerance Default ¼ 2:010�6

LU Update Tolerance Default ¼ 10:0
Maximize Default ¼ Minimize
Minimize
New Basis File Default ¼ 0
Nolist
Optimality Tolerance Default ¼ 10�6

Old Basis File Default ¼ 0
Partial Price Default ¼ 10 LPð Þ or 1 QPð Þ
Pivot Tolerance Default ¼ �0:67

Print File Default ¼ 0
Print Frequency Default ¼ 100
Print Level Default ¼ 1
Punch File Default ¼ 0
Save Frequency Default ¼ 100
Scale Option Default ¼ 2
Scale Tolerance Default ¼ 0:9
Solution File Default ¼ 0
Summary File Default ¼ 0
Summary Frequency Default ¼ 100
Superbasics Limit Default ¼ min 500; nH þ 1; nð Þ
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Suppress Parameters
Timing Level Default ¼ 0
Unbounded Step Size Default ¼ max bigbnd; 1020

� �

11.2 Description of the Optional Parameters

Check Frequency i Default ¼ 60

Every ith iteration after the most recent basis factorization, a numerical test is made to see if the current
solution x; sð Þ satisfies the linear constraints Ax� s ¼ 0. If the largest element of the residual vector
r ¼ Ax� s is judged to be too large, the current basis is refactorized and the basic variables recomputed
to satisfy the constraints more accurately. If i < 0, the default value is used. If i ¼ 0, the value
i ¼ 99999999 is used and effectively no checks are made.

Check Frequency ¼ 1 is useful for debugging purposes, but otherwise this option should not be needed.

Crash Option i Default ¼ 3
Crash Tolerance r Default ¼ 0:1

Note that this option does not apply when START ¼ W (see Section 5).

If START ¼ C , an internal Crash procedure is used to select an initial basis from various rows and

columns of the constraint matrix A � I
� �

. The value of i determines which rows and columns of A are

initially eligible for the basis, and how many times the Crash procedure is called. Columns of �I are used
to pad the basis where necessary.

i Meaning
0 The initial basis contains only slack variables: B ¼ I.
1 The Crash procedure is called once, looking for a triangular basis in all rows and columns of the

matrix A.
2 The Crash procedure is called once, looking for a triangular basis in rows.
3 The Crash procedure is called twice. The two calls treat linear equalities and linear inequalities

separately.

If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound.) The Crash procedure then makes several passes through
the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned to
‘pivot’ on a particular row if the column contains a suitably large element in a row that has not yet been
assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For remaining
unassigned rows, slack variables are inserted to complete the basis.

This value allows the Crash procedure to ignore certain ‘small’ non-zero elements in each column of A. If
amax is the largest element in column j, other non-zeros aij in the column are ignored if

aij
		 		 � amax � r. (To be meaningful, r should be in the range 0 � r < 1.)

When r > 0:0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely to
be nonsingular and almost triangular. The intention is to obtain a starting basis containing more columns
of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some problems.

For example, suppose the first m columns of A form the matrix shown under LU factor tolerance; i.e., a
tridiagonal matrix with entries �1, 4, �1. To help the Crash procedure choose all m columns for the

initial basis, we would specify Crash tolerance r for some value of r > 1
4
.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Dump File i1 Default ¼ 0
Load File i2 Default ¼ 0

Dump File and Load File are similar to Punch File and Insert File, but they record solution information
in a manner that is more direct and more easily modified. A full description of information recorded in
Dump File and Load File is given in Gill et al. (1999).

|
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If i1 > 0, the last solution obtained will be output to the file with unit number i.

If i2 > 0, the Load File containing basis information will be read. The file will usually have been output
previously as a Dump File. The file will not be accessed if an Old Basis File or an Insert File is
specified.

Elastic Mode i Default ¼ 1

This parameter determines if (and when) elastic mode is to be started. Three elastic modes are available as
follows:

i Meaning
0 Elastic mode is never invoked. E04NQF will terminate as soon as infeasibility is detected. There

may be other points with significantly smaller sums of infeasibilities.
1 Elastic mode is invoked only if the constraints are found to be infeasible (the default). If the

constraints are infeasible, continue in elastic mode with the composite objective determined by the
values of Elastic Objective and Elastic Weight.

2 The iterations start and remain in elastic mode. This option allows you to minimize the composite
objective function directly without first performing Phase 1 iterations.

The success of this option will depend critically on your choice of Elastic Weight. If Elastic
Weight is sufficiently large and the constraints are feasible, the minimizer of the composite
objective and the solution of the original problem are identical. However, if the Elastic Weight is
not sufficiently large, the minimizer of the composite function may be infeasible, even though a
feasible point for the constraints may exist.

Elastic Objective i Default ¼ 1

This option determines the form of the composite objective. Three types of composite objectives are
available.

i Meaning
0 Include only the true objective f xð Þ in the composite objective. This option sets � ¼ 0 in the

composite objective and will allow E04NQF to ignore the elastic bounds and find a solution that
minimizes f subject to the nonelastic constraints. This option is useful if there are some ‘soft’
constraints that you would like to ignore if the constraints are infeasible.

1 Use a composite objective defined with � determined by the value of Elastic Weight. This value
is intended to be used in conjunction with Elastic Mode ¼ 2.

2 Include only the elastic variables in the composite objective. The elastics are weighted by � ¼ 1.
This choice minimizes the violations of the elastic variables at the expense of possibly increasing
the true objective. This option can be used to find a point that minimizes the sum of the violations
of a subset of constraints determined by the parameter HELAST.

Elastic Weight r Default ¼ 1:0

This keyword defines the value of � in the composite objective.

At each iteration of elastic mode, the composite objective is defined to be

minimize � f xð Þ þ � (sum of infeasibilities);

where � ¼ 1 for Minimize, � ¼ �1 for Maximize, and f is the current objective value.

Note that the effect of � is not disabled once a feasible iterate is obtained.

Expand Frequency i Default ¼ 10000

This option is part of an anti-cycling procedure (see Section 10.4) designed to allow progress even on
highly degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a period
of i iterations, the feasibility tolerance actually used by E04NQF (i.e., the working feasibility tolerance)
increases from 0:5� to � (in steps of 0:5�=i).
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Increasing the value of i helps reduce the number of slightly infeasible nonbasic variables (most of which
are eliminated during the resetting procedure). However, it also diminishes the freedom to choose a large
pivot element (see Pivot Tolerance below).

If i < 0, the default value is used. If i ¼ 0, the value i ¼ 99999999 is used and effectively no anti-cycling
procedure is invoked.

Factorisation Frequency i Default ¼ 100 LPð Þ or 50 QPð Þ
If i > 0, at most i basis changes will occur between factorizations of the basis matrix. For LP problems,
the basis factors are usually updated at every iteration. Higher values of i may be more efficient on
problems that are extremely sparse and well scaled. For QP problems, fewer basis updates will occur as
the solution is approached. The number of iterations between basis factorizations will therefore increase.
During these iterations a test is made regularly according to the value of Check Frequency (see above) to
ensure that the linear constraints Ax� s ¼ 0 are satisfied. If necessary, the basis will be refactorized
before the limit of i updates is reached. If i � 0, the default value is used.

Feasibility Tolerance r Default ¼ 10�6

A feasible problem is one in which all variables satisfy their upper and lower bounds to within the absolute
tolerance r. (This includes slack variables. Hence, the general constraints are also satisfied to within r.)

E04NQF attempts to find a feasible solution before optimizing the objective function. If the sum of
infeasibilities cannot be reduced to zero, the problem is assumed to be infeasible. Let Sinf be the
corresponding sum of infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor of
10 or 100. Otherwise, some error in the data should be suspected.

Note that if SINF is not small and you have not asked E04NQF to minimize the violations of the elastic
variables (i.e., you have not specified Elastic Objective ¼ 2, there may be other points that have a
significantly smaller sum of infeasibilities. E04NQF will not attempt to find the solution that minimizes
the sum unless Elastic Objective ¼ 2.

If the constraints and variables have been scaled (see Scale Option below), then feasibility is defined in
terms of the scaled problem (since it is more likely to be meaningful).

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound less
than or equal to �bigbnd will be regarded as minus infinity). If r � 0, the default value is used.

Iteration Limit i Default ¼ max 10000;mð Þ
Iters
Itns

The value of i specifies the maximum number of iterations allowed before termination. Setting i ¼ 0 and
Print Level > 0 means that the workspace needed to start solving the problem will be computed and
printed, but no iterations will be performed. If i < 0, the default value is used.

List Default ¼ Nolist
Nolist

Normally each optional parameter specification is printed as it is supplied. Nolist may be used to suppress
the printing and List may be used to restore printing.

LU Factor Tolerance r1 Default ¼ 100:0
LU Update Tolerance r2 Default ¼ 10:0

The values of r1 and r2 affect the stability and sparsity of the basis factorization B ¼ LU , during
refactorization and updates respectively. The lower triangular matrix L is a product of matrices of the form

1

	 1

� �
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where the multipliers 	 will satisfy 	j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. They must satisfy r1, r2 � 1:0.

For large and relatively dense problems, r1 ¼ 10:0 or 5:0 (say) may give a useful improvement in stability
without impairing sparsity to a serious degree.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce r1 and/or r2 in order
to achieve stability. For example, if the columns of A include a submatrix of the form

4 �1

�1 4 �1

�1 4 �1

: : :
�1 4 �1

�1 4

0
BBBBBB@

1
CCCCCCA
,

one should set both r1 and r2 to values in the range 1:0 � ri < 4:0.

LU Singularity Tolerance r Default ¼ 2:010�6

If r > 0, r defines the singularity tolerance used to guard against ill-conditioned basis matrices. Whenever

the basis is refactorized, the diagonal elements of U are tested as follows. If ujj

		 		 � r or

ujj
		 		 < r�max

i
uij

		 		, the jth column of the basis is replaced by the corresponding slack variable. If

r � 0, the default value is used.

Maximize Default ¼ Minimize
Minimize

This option specifies the required direction of the optimization. It applies to both linear and nonlinear
terms (if any) in the objective function. Note that if two problems are the same except that one minimizes
f xð Þ and the other maximizes �f xð Þ, their solutions will be the same but the signs of the dual variables �i

and the reduced gradients dj (see Section 10.3) will be reversed.

New Basis File i1 Default ¼ 0
Backup Basis File i2 Default ¼ 0
Save Frequency i3 Default ¼ 100

New Basis File and Backup Basis File sometimes referred to as basis maps. They contain the most
compact representation of the state of each variable. They are intended for restarting the solution of a
problem at a point that was reached by an earlier run. For non-trivial problems, it is advisable to save
basis maps at the end of a run, in order to restart the run if necessary.

If i1 > 0, a basis map will be saved on file i1 every i3th iteration, where i3 is the Save Frequency. The
first record of the file will contain the word PROCEEDING if the run is still in progress. A basis map will
also be saved at the end of a run, with some other word indicating the final solution status.

Using i2 > 0, is intended as a safeguard against losing the results of a long run. Suppose that a New Basis
File is being saved every 100 (Save Frequency) iterations, and that E04NQF is about to save such a basis
at iteration 2000. It is conceivable that the run may be interrupted during the next few milliseconds (in the
middle of the save). In this case the basis file will be corrupted and the run will have been essentially
wasted.

To eliminate this risk, both a New Basis File and a Backup Basis File may be specified. The following
would be suitable for the above example:

Backup Basis File 11
New Basis File 12

The current basis will then be saved every 100 iterations, first on file 12 and then immediately on file 11.
If the run is interrupted at iteration 2000 during the save on file 12, there will still be a usable basis on file
11 (corresponding to iteration 1900).

Note that a new basis will be saved in New Basis File at the end of a run if it terminates normally, but it
will not be saved in Backup Basis File. In the above example, if an optimum solution is found at iteration
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2050 (or if the iteration limit is 2050), the final basis on file 12 will correspond to iteration 2050, but the
last basis saved on file 11 will be the one for iteration 2000.

A full description of information recorded in New Basis File and Backup Basis File is given in Gill et al.
(1999).

Old Basis File i Default ¼ 0

If i > 0, the basis maps information will be obtained from this file. A full description of information
recorded in New Basis File and Backup Basis File is given in Gill et al. (1999). The file will usually
have been output previously as a New Basis File or Backup Basis File.

The file will not be acceptable if the number of rows or columns in the problem has been altered.

Optimality Tolerance r Default ¼ 10�6

This is used to judge the size of the reduced gradients dj ¼ gj � �aj, where gj is the jth component of the

gradient, aj is the associated column of the constraint matrix A �Ið Þ, and � is the set of dual variables.

By construction, the reduced gradients for basic variables are always zero. The problem will be declared
optimal if the reduced gradients for nonbasic variables at their lower or upper bounds satisfy

dj= �k k � �r or dj= �k k � r

respectively, and if dj
		 		= �k k � r for superbasic variables.

In the above tests, �k k is a measure of the size of the dual variables. It is included to make the tests
independent of a scale factor on the objective function.

The quantity �k k actually used is defined by

�k k ¼ max �
ffiffiffiffiffi
m

p
; 1

� �
, where � ¼

Xm
i¼1

�ij jj

so that only large scale factors are allowed for.

If the objective is scaled down to be very small, the optimality test reduces to comparing dj against 0:01r.

Partial Price i Default ¼ 10 LPð Þ or 1 QPð Þ
This option is recommended for large FP or LP problems that have significantly more variables than
constraints (i.e., n � m). It reduces the work required for each pricing operation (i.e., when a nonbasic

variable is selected to enter the basis). If i ¼ 1, all columns of the constraint matrix A � I
� �

are

searched. If i > 1, A and I are partitioned to give i roughly equal segments Aj;Kj, for j ¼ 1; 2; . . . ; p
(modulo p). If the previous pricing search was successful on Aj�1;Kj�1, the next search begins on the

segments Aj;Kj. If a reduced gradient is found that is larger than some dynamic tolerance, the variable

with the largest such reduced gradient (of appropriate sign) is selected to enter the basis. If nothing is
found, the search continues on the next segments Ajþ1; Kjþ1, and so on. If i � 0, the default value is

used.

Pivot Tolerance r Default ¼ �0:67

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would cause the
basis to become almost singular.

When x changes to xþ �p for some search direction p, a ‘ratio test’ is used to determine which
component of x reaches an upper or lower bound first. The corresponding element of p is called the pivot
element.

For linear problems, elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance r.

It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Feasibility Tolerance (say t) provides some freedom to maximize the pivot element and thereby improve
numerical stability. Excessively small values of t should therefore not be specified.

|
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To a lesser extent, the Expand Frequency (say f) also provides some freedom to maximize the pivot
element. Excessively large values of f should therefore not be specified.

Print File i Default ¼ 0

If i > 0, the following information is output to i during the solution of each problem:

a listing of the optional parameters;

some statistics about the problem;

the amount of storage available for the LU factorization of the basis matrix;

notes about the initial basis resulting from a crash procedure or a Basis File;

the iteration log;

basis factorization statistics;

the exit IFAIL condition and some statistics about the solution obtained;

the printed solution, if requested.

The last four items are described in Sections 8 and 12. Further brief output may be directed to the
Summary File.

Print Frequency i Default ¼ 100

If i > 0, one line of the iteration log will be printed every ith iteration. A value such as i ¼ 10 is
suggested for those interested only in the final solution.

Print Level i Default ¼ 1

This controls the amount of printing produced by E04NQF as follows.

0 No output except error messages. If you want to suppress all output, set Print File ¼ 0.
¼ 1 The set of selected options, problem statistics, summary of the scaling procedure, information

about the initial basis resulting from a crash or a basis file. a single line of output at each iteration
(controlled by Print Frequency), and the exit condition with a summary of the final solution.

� 10 Basis factorization statistics.

Punch File i1 Default ¼ 0
Insert File i2 Default ¼ 0

These files provide compatibility with commercial mathematical programming systems. The Punch File
from a previous run may be used as an Insert File for a later run on the same problem. A full description
of information recorded in Insert File and Punch File is given in Gill et al. (1999).

If i2 > 0, the final solution obtained will be output to file i1. For linear programs, this format is
compatible with various commercial systems.

If i1 > 0, the Insert File containing basis information will be read. The file will usually have been output
previously as a Punch File. The file will not be accessed if Old Basis File is specified.

Scale Option i Default ¼ 2
Scale Tolerance r Default ¼ 0:9

Three scale options are available as follows:

i Meaning
0 No scaling. This is recommended if it is known that x and the constraint matrix never have very

large elements (say, larger than 1000).
1 The constraints and variables are scaled by an iterative procedure that attempts to make the matrix

coefficients as close as possible to 1.0 (see Fourer (1982)). This will sometimes improve the
performance of the solution procedures.
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2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional
scaling is performed that may be helpful if the right-hand side b or the solution x is large. This
takes into account columns of A �Ið Þ that are fixed or have positive lower bounds or negative
upper bounds.

Scale Tolerance affects how many passes might be needed through the constraint matrix. On each pass,
the scaling procedure computes the ratio of the largest and smallest non-zero coefficients in each column:


j ¼ max
j

aij
		 		=min

i
aij
		 		 aij 6¼ 0

� �
.

If max
j is less than r times its previous value, another scaling pass is performed to adjust the row and

column scales. Raising r from 0.9 to 0.99 (say) usually increases the number of scaling passes through A.
At most 10 passes are made.

Solution File i Default ¼ 0

If i > 0, the final solution will be output to file i (whether optimal or not). All numbers are printed in
1pe16.6 format.

To see more significant digits in the printed solution, it will sometimes be useful to make i refer to the
system Print File.

Summary File i1 Default ¼ 0
Summary Frequency i2 Default ¼ 100

If i1 > 0, a brief log will be output to file i1, including one line of information every i2th iteration. In an
interactive environment, it is useful to direct this output to the terminal, to allow a run to be monitored on-
line. (If something looks wrong, the run can be manually terminated.) Further details are given in Section
12.

Superbasics Limit i Default ¼ min 500; nH þ 1; nð Þ
This places a limit on the storage allocated for superbasic variables. Ideally, i should be set slightly larger
than the ‘number of degrees of freedom’ expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom. (The number of
variables lying strictly between their bounds is no more than m, the number of general constraints.) The
default value of i is therefore 1.

For quadratic problems, the number of degrees of freedom is often called the ‘number of independent
variables’.

Normally, i need not be greater than NCOLHþ 1, where NCOLH is the number of leading non-zero
columns of H, nH .

For many problems, i may be considerably smaller than NCOLH. This will save storage if NCOLH is
very large.

Suppress Parameters

Normally E04NQF prints the optional file as it is being read, and then prints a complete list of the
available keywords and their final values. The Suppress Parameters option tells E04NQF not to print the
full list.

Timing Level i Default ¼ 0

If i > 0, some timing information will be output to the Print File, if it is > 0.

Unbounded Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive-
definite.) If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.
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12 Description of Monitoring Information

This section describes the intermediate printout and final printout which constitutes the monitoring
information produced by E04NQF. (See also the description of the optional parameters Print File and
Print Level in Section 11.2.) The level of printed output can be controlled by the user.

When Print Level > 20 and Print File > 0, the following lines of intermediate printout (< 120
characters) are produced on the unit number specified by Print File whenever the matrix B or

BS ¼ B Sð ÞT is factorized. Gaussian elimination is used to compute an LU factorization of B or BS,

where PLPT is a lower triangular matrix and PUQ is an upper triangular matrix for some permutation
matrices P and Q. The factorization is stabilized in the manner described under the optional parameter
LU Factor Tolerance (see Section 11.2).

Label Description

Factorize is the factorization count.

Demand is a code giving the reason for the present factorization as follows:

Code Meaning
0 First LU factorization.
1 The number of updates reached the value of the optional parameter

Factorization Frequency (see Section 11.2).
2 The number of non-zeros in the updated factors has increased significantly.
7 Not enough storage to update factors.
10 Row residuals too large (see the description for the optional parameter

Check Frequency).
11 Ill-conditioning has caused inconsistent results.

Iteration is the iteration count.

Infeas the number of infeasibilities at the start of the previous iteration.

Objective if Infeas > 0, this is the Sum of Infeasibilities at the start of the previous iteration.

Nonlinear is the number of nonlinear variables in the current basis B (not printed if BS is
factorized). If Infeas ¼ 0, this is the value of the objective function after the
previous iteration.

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).

Elems is the number of non-zeros in B (not printed if BS is factorized)

Density is the percentage non-zero density of B (not printed if BS is factorized). More
precisely, Density ¼ 100� Elems= m�mð Þ, where m is the number of rows in
the problem m ¼ Linearþ Slacksð Þ.

Compressns is the number of times the data structure holding the partially factorized matrix
needed to be compressed, in order to recover unused workspace. Ideally, it should
be zero.

Merit is the average Markowitz merit count for the elements chosen to be the diagonals of
PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ, where c and r are the
number of non-zeros in the column and row containing the element at the time it is
selected to be the next diagonal. Merit is the average of m such quantities. It gives
an indication of how much work was required to preserve sparsity during the
factorization.

lenL is the number of non-zeros in L.

lenU is the number of non-zeros in U .

Increase is the percentage increase in the number of non-zeros in L and U relative to the
number of non-zeros in B. More precisely, Increase ¼ 100� lenLþ lenU�ð
ElemsÞ=Elems.
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m is the number of rows in the problem. Note that m ¼ Utþ Ltþ bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax is the maximum sub-diagonal element in the columns of L. This will not exceed
the value of the optional parameter LU Factor Tolerance (see Section 11.2).

Bmax is the maximum non-zero element in B (not printed if BS is factorized).

BSmax is the maximum non-zero element in BS (not printed if B is factorized).

Umax is the maximum non-zero element in U , excluding elements of B that remain in U
unchanged. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of U without modification. Elements in such rows will not
contribute to Umax. If the basis is strictly triangular then none of the elements of B
will contribute and Umax will be zero.)

Ideally, Umax should not be significantly larger than Bmax. If it is several orders of
magnitude larger, it may be advisable to reset the LU Factor Tolerance to some
value nearer unity.

Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ (not printed if BS is
factorized).

Growth is the value of the ratio Umax/Bmax, which should not be too large.

Providing Lmax is not large (say < 10:0), the ratio max Bmax; Umaxð Þ=Umin is an
estimate of the condition number of B. If this number is extremely large, the basis
is nearly singular and some numerical difficulties might occur. (However, an effort
is made to avoid near-singularity by using slacks to replace columns of B that
would have made Umin extremely small and the modified basis is refactorized.)

Growth is not printed if BS is factorized.

Lt is the number of triangular columns of B at the left of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns of B have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized has reached 0.6.

When Print Level > 20 and Print File > 0, the following lines of intermediate printout (< 120
characters) are produced on the unit number specified by Print File whenever START ¼ C (see Section
5). They refer to the number of columns selected by the Crash procedure during each of several passes
through A, whilst searching for a triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are rather
far apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., HSðjÞ ¼ 3 for some j � n).
It will be a subset of the columns for which HSðjÞ ¼ 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis (to make it a non-singular triangle).
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When Print Level > 20 and Print File > 0, the following lines of intermediate printout (< 80 characters)
are produced on the unit number specified by Print File. They refer to the elements of the NAMES array
(see Section 5).

Label Description

Name gives the name for the problem (blank if none).

Status gives the exit status for the problem (i.e., Optimal soln, Weak soln, Unbounded,
Infeasible, Excess itns, Error condn or Feasble soln) followed by details
of the direction of the optimization (i.e., (Min) or (Max)).

Objective gives the name of the free row for the problem (blank if none).

RHS gives the name of the constraint right-hand side for the problem (blank if none).

Ranges gives the name of the ranges for the problem (blank if none).

Bounds gives the name of the bounds for the problem (blank if none).

At the end of a run, the final solution will be output to the Print File. Some header information appears
first to identify the problem and the final state of the optimization procedure. A ROWS section and a
COLUMNS section then follow, giving one line of information for each row and column.

The ROWS section

The general constraints take the form l � Ax � u. The ith constraint is therefore of the

1 � �i
Tx � �,

where �i is the ith row of A.

Internally, the constraints take the form Ax� s ¼ 0, where s is the set of slack variables (which happen to
satisfy the bounds l � s � u). For the ith constraint it is the slack variable si that is directly available, and
it is sometimes convenient to refer to its state. A ‘.’ is printed for any numerical value that is exactly zero.

Label Description

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of vi.

State the state of vi (the state of si relative to the bounds � and �. The various states
possible are as follows:

LL si is nonbasic at its lower limit, �.

UL si is nonbasic at its upper limit, �.

EQ si is nonbasic and fixed at the value � ¼ �.

FR si is nonbasic and currently zero, even though it is free to take any value
between its bounds � and �.

BS si is basic.

SBS si is superbasic.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0
(see Section 11.2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
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them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (see Section 11.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
parameter Optimality Tolerance (see Section 11.2), the solution would not
be declared optimal because the reduced gradient for the variable would not
be considered negligible.

Activity is the value of vi at the final iterate (the ith element of ATx).

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Limit is �, the lower bound specified for the variable si. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is �, the upper bound specified for the variable si. None indicates that
BUðjÞ � bigbnd.

Dual Activity is the value of the dual variable �i (the Lagrange multiplier for vi; see Section 10.3).
For FP problems, �i is set to zero.

i gives the index i of the ith row.

The COLUMNS section

Let the jth component of x be the variable xj and assume that it satisfies the bounds � � xj � �. A ‘.’ is

printed for any numerical value that is exactly zero.

Label Description

Number is the column number j. (This is used internally to refer to xj in the intermediate

output.)

Column gives the name of xj.

State the state of xj relative to the bounds � and �. The various states possible are as

follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.

FR xj is nonbasic and currently zero, even though it is free to take any value

between its bounds � and �.

BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0
(see Section 11.2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
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giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (see Section 11.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
parameter Optimality Tolerance (see Section 11.2), the solution would not
be declared optimal because the reduced gradient for the variable would not
be considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Reduced Gradnt is the value of dj at the final iterate (see Section 10.3). For FP problems, dj is set to
zero.

m + j is the value of mþ j.

Note: if two problems are the same except that one minimizes f xð Þ and the other maximizes �f xð Þ, their
solutions will be the same but the signs of the dual variables �i and the reduced gradients dj will be
reversed.

The SOLUTION file

If a positive Solution File is specified, the information contained in a printed solution may also be output
to the relevant file (which may be the PRINT file if so desired). Infinite Upper and Lower limits appear as

1020rather than None. Other real values are output with format 1pe16.6. Again, the maximum record
length is 111 characters, including what would be the carriage-control character if the file were printed.

A SOLUTION file is intended to be read from disk by a self-contained program that extracts and saves
certain values as required for possible further computation. Typically the first 14 records would be
ignored. Each subsequent record may be read using

FORMAT (i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts with a 1 and
is otherwise blank. If this and the next 4 records are skipped, the COLUMNS section can then be read
under the same format. (There should be no need to use any BACKSPACE statements.)

The SUMMARY file

If Summary File f is specified with f > 0, certain brief information will be output to file f. When E04NQF
is run interactively, file f will usually be the terminal. For batch jobs a disk file should be used, to retain a
concise log of each run if desired. (A Summary File is more easily perused than the associated Print
File).

A Summary File (like the Print File) is not rewound after a problem has been processed. The maximum
record length is 72 characters, including a carriage-control character in column 1.

The following information is included:

1. The Begin card from the optional parameters file, if used (see ISPECS);

2. The basis file loaded, if any;
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3. The status of the solution after each basis factorization (whether feasible; the objective value; the
number of function calls so far);

4. The same information every kth iteration, where k is the specified Summary Frequency (see Section
11.2);

5. Warnings and error messages;

6. The exit condition and a summary of the final solution.

Item 4 is preceded by a blank line, but item 5 is not.

The meaning of the printout for linear constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, NAMESðjÞ replaced by NAMESðnþ jÞ, BLðjÞ and
BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ respectively, and with the following change in the
heading:

Constrnt gives the name of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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