
NAG Fortran Library Routine Document

E04NFF=E04NFA

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the details of

the algorithm. If you wish to use default settings for all of the optional parameters, you need only read

Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and Section 12 for a

detailed description of the algorithm, the specification of the optional parameters and a description of the

monitoring information produced by the routine.

1 Purpose

E04NFF=E04NFA solves general quadratic programming problems. It is not intended for large sparse
problems.

E04NFA is a version of E04NFF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5 below). The initialisation routine E04WBF must have been
called prior to calling E04NFA.

2 Specifications

2.1 Specification for E04NFF

SUBROUTINE E04NFF(N, NCLIN, A, LDA, BL, BU, CVEC, H, LDH, QPHESS,
1 ISTATE, X, ITER, OBJ, AX, CLAMDA, IWORK, LIWORK, WORK,
2 LWORK, IFAIL)

INTEGER N, NCLIN, LDA, LDH, ISTATE(N+NCLIN), ITER,
1 IWORK(LIWORK), LIWORK, LWORK, IFAIL
real A(LDA,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*), H(LDH,*),

1 X(N), OBJ, AX(*), CLAMDA(N+NCLIN), WORK(LWORK)
EXTERNAL QPHESS

2.2 Specification for E04NFA

SUBROUTINE E04NFA(N, NCLIN, A, LDA, BL, BU, CVEC, H, LDH, QPHESS,
1 ISTATE, X, ITER, OBJ, AX, CLAMDA, IWORK, LIWORK, WORK,
2 LWORK, IUSER, RUSER, LWSAV, IWSAV, RWSAV, IFAIL)

INTEGER N, NCLIN, LDA, LDH, ISTATE(N+NCLIN), ITER,
1 IWORK(LIWORK), LIWORK, LWORK, IUSER(*), IWSAV(610),
2 IFAIL
real A(LDA,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*), H(LDH,*),

1 X(N), OBJ, AX(*), CLAMDA(N+NCLIN), WORK(LWORK),
2 RUSER(*), RWSAV(475)
LOGICAL LWSAV(120)
EXTERNAL QPHESS

Before calling E04NFA, or either of the option setting routines E04NGA or E04NHA, routine E04WBF
must be called. The specification for E04WBF is:

SUBROUTINE E04WBF(RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
1 RWSAV, LRWSAV, IFAIL)

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV, IFAIL
real RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER*6 RNAME
CHARACTER*80 CWSAV(LCWSAV)
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E04WBF should be called with RNAME ¼ ’E04NFA’. LCWSAV, LLWSAV, LIWSAV and LRWSAV, the
declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04WBF and E04NKA, E04NLA or E04NMA.

3 Description

E04NFF=E04NFA is designed to solve a class of quadratic programming problems that are assumed to be
stated in the following general form:

minimize
x2Rn

fðxÞ subject to l � x
Ax

� �
� u;

where A is an mL by n matrix and fðxÞ may be specified in a variety of ways depending upon the
particular problem to be solved. The available forms for fðxÞ are listed in Table 1 below, in which the
prefixes FP, LP and QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic programming’
respectively and c is an n element vector.

Problem type fðxÞ Matrix H

FP Not applicable Not applicable
LP cTx Not applicable

QP1 1
2
xTHx symmetric

QP2 cTxþ 1
2
xTHx symmetric

QP3 1
2
xTHTHx m by n upper trapezoidal

QP4 cTxþ 1
2
xTHTHx m by n upper trapeziodal

Table 1

There is no restriction on H or HTH apart from symmetry. If the quadratic function is convex, a global
minimum is found; otherwise, a local minimum is found. The default problem type is QP2 and other
objective functions are selected by using the optional parameter Problem Type (see Section 11.2). For
problems of type FP, the objective function is omitted and the routine attempts to find a feasible point for
the set of constraints.

The constraints involving A are called the general constraints. Note that upper and lower bounds are
specified for all the variables and for all the general constraints. An equality constraint can be specified by
setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to special
values that will be treated as �1 or þ1. (See the description of the optional parameter Infinite Bound
Size in Section 11.2.)

The defining feature of a quadratic function fðxÞ is that the second-derivative matrix r2fðxÞ (the Hessian

matrix) is constant. For QP1 and QP2 (the default), r2fðxÞ ¼ H; for QP3 and QP4, r2fðxÞ ¼ HTH;

and for the LP case, r2fðxÞ ¼ 0. If H is positive semi-definite, it is usually more efficient to use
E04NCF=E04NCA. If H is defined as the zero matrix, E04NFF=E04NFA will still attempt to solve the
resulting linear programming problem; however, this can be accomplished more efficiently by setting the
optional parameter Problem Type ¼ LP (see Section 11.2), or by using E04MFF=E04MFA instead.

You must supply an initial estimate of the solution.

In the QP case, you may supply H either explicitly as an m by n matrix, or implicitly in a subroutine that

computes the product Hx or HTHx for any given vector x.
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In general, a successful run of E04NFF=E04NFA will indicate one of three situations:

(i) a minimizer has been found;

(ii) the algorithm has terminated at a so-called dead-point; or

(iii) the problem has no bounded solution.

If a minimizer is found, and r2fðxÞ is positive-definite or positive semi-definite, E04NFF=E04NFA will
obtain a global minimizer; otherwise, the solution will be a local minimizer (which may or may not be a
global minimizer). A dead-point is a point at which the necessary conditions for optimality are satisfied
but the sufficient conditions are not. At such a point, a feasible direction of decrease may or may not exist,
so that the point is not necessarily a local solution of the problem. Verification of optimality in such
instances requires further information, and is in general an NP-hard problem (see Pardalos and Schnitger

(1988)). Termination at a dead-point can occur only if r2fðxÞ is not positive-definite. If r2fðxÞ is
positive semi-definite, the dead-point will be a weak minimizer (i.e., with a unique optimal objective value,
but an infinite set of optimal x).

The method used by E04NFF=E04NFA (see Section 10) is most efficient when many constraints or bounds
are active at the solution.

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) User’s guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems with a
mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for linearly
constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Pardalos P M and Schnitger G (1988) Checking local optimality in constrained quadratic programming is
NP-hard Operations Research Letters 7 33–35

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Parameters

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: mL, the number of general linear constraints.

Constraint: NCLIN � 0.

3: A(LDA,*) – real array Input

Note: the second dimension of the array A must be at least N when NCLIN > 0, and at least 1
when NCLIN ¼ 0.

On entry: the ith row of A must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;mL.

If NCLIN ¼ 0, A is not referenced.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
E04NFF=E04NFA is called.

Constraint: LDA � maxð1;NCLINÞ.

5: BL(N+NCLIN) – real array Input
6: BU(N+NCLIN) – real array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, and
the next mL elements the bounds for the general linear constraints (if any). To specify a non-
existent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a non-existent upper

bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be

changed by the optional parameter Infinite Bound Size (see Section 11.2). To specify the jth
constraint as an equality, set BLðjÞ ¼ BUðjÞ ¼ �, say, where j�j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLIN,
j�j < bigbnd when BLðjÞ ¼ BUðjÞ ¼ �.

7: CVEC(*) – real array Input

Note: the first dimension of the array CVEC must be at least N when the problem is of type LP,
QP2 (the default) or QP4, and at least 1 otherwise.

On entry: the coefficients of the explicit linear term of the objective function when the problem is of
type LP, QP2 (the default) and QP4.

If the problem is of type FP, QP1, or QP3, CVEC is not referenced.

8: H(LDH,*) – real array Input

Note: the second dimension of the array H must be at least N if it is to be used to store H
explicitly, and at least 1 otherwise.

On entry: H may be used to store the quadratic term H of the QP objective function if desired. In
some cases, the user need not use H to store H explicitly (see the specification of subroutine
QPHESS below). The elements of H are referenced only by subroutine QPHESS. The number of
rows of H is denoted by m, whose default value is n. (The optional parameter Hessian Rows may
be used to specify a value of m < n; see Section 11.2.)

If the default version of QPHESS is used and the problem is of type QP1 or QP2 (the default), the
first m rows and columns of H must contain the leading m by m rows and columns of the
symmetric Hessian matrix H. Only the diagonal and upper triangular elements of the leading m
rows and columns of H are referenced. The remaining elements need not be assigned.

If the default version of QPHESS is used and the problem is of type QP3 or QP4, the first m rows

of H must contain an m by n upper trapezoidal factor of the symmetric Hessian matrix HTH. The
factor need not be of full rank, i.e., some of the diagonal elements may be zero. However, as a
general rule, the larger the dimension of the leading non-singular sub-matrix of H, the fewer
iterations will be required. Elements outside the upper trapezoidal part of the first m rows of H
need not be assigned.

If a non-default version of QPHESS is supplied, then in some cases it may be desirable to use a
one-dimensional array to transmit data to QPHESS. (This is illustrated in the example program in
Section 9 of the document for E04NGF=E04NGA.) H is then declared as a vector with dimension
(LDH), where LDH � N� ðNþ 1Þ=2.
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In other situations, it may be desirable to compute Hx or HTHx without accessing H – for

example, if H or HTH is sparse or has special structure. The parameters H and LDH may then
refer to any convenient array.

If the problem is of type FP or LP, H is not referenced.

9: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which
E04NFF=E04NFA is called.

Constraints:

if the problem is of type QP1, QP2 (the default), QP3 or QP4, LDH � N or at least the value
of the optional parameter Hessian Rows (default value ¼ n; see Section 11.2);
if the problem is of type FP or LP, LDH � 1.

10: QPHESS – SUBROUTINE, supplied by the NAG Fortran Library or the user. External Procedure

In general, you need not provide a version of QPHESS, because a ‘default’ subroutine with name
E04NFU=E54NFU is included in the Library (NFUE04=NFUE54 in some implementations: see the
Users’ Note for your implementation for details). However, the algorithm of E04NFF=E04NFA

requires only the product of H or HTH and a vector x; and in some cases you may obtain
increased efficiency by providing a version of QPHESS that avoids the need to define the elements

of the matrices H or HTH explicitly.

QPHESS is not referenced if the problem is of type FP or LP, in which case QPHESS may be the
routine E04NFU=E54NFU (NFUE04=NFUE54 in some implementations).

The specification of QPHESS for E04NFF is:

SUBROUTINE FUNCT(N, JTHCOL, H, LDH, X, HX)

INTEGER N, JTHCOL, LDH
real H(LDH,*), X(N), HX(N)

The specification of QPHESS for E04NFA is:

SUBROUTINE FUNCT(N, JTHCOL, H, LDH, X, HX, IUSER, RUSER)

INTEGER N, JTHCOL, LDH, IUSER(*)
real H(LDH,*), X(N), HX(N), RUSER(*)

1: N – INTEGER Input

On entry: this is the same parameter N as supplied to E04NFF=E04NFA (see above).

2: JTHCOL – INTEGER Input

On entry: JTHCOL specifies whether or not the vector x is a column of the identity
matrix. If JTHCOL ¼ j > 0, then the vector x is the jth column of the identity matrix,

and hence Hx or HTHx is the jth column of H or HTH, respectively. This may in some
cases require very little computation and QPHESS may be coded to take advantage of this.
However special code is not necessary because x is always stored explicitly in the array X.
If JTHCOL ¼ 0, x has no special form.

3: H(LDH,*) – real array Input

On entry: this is the same parameter H as supplied to E04NFF=E04NFA (see above).

4: LDH – INTEGER Input

On entry: this is the same parameter LDH as supplied to E04NFF=E04NFA (see above).

5: X(N) – real array Input

On entry: the vector x.
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6: HX(N) – real array Output

On exit: the product Hx if the problem is of type QP1 or QP2 (the default), or the product

HTHx if the problem is of type QP3 or QP4.

Note: the following are additional parameters for specific use of QPHESS with E04NFA. Users of

E04NFF therefore need not read the remainder of this description.

7: IUSER(*) – INTEGER array User Workspace
8: RUSER(*) – real array User Workspace

QPHESS is called from E04NFA with the parameters IUSER and RUSER as supplied to
E04NFA. You are free to use the arrays IUSER and RUSER to supply information to
QPHESS.

QPHESS must be declared as EXTERNAL in the (sub)program from which E04NFF=E04NFA is
called. Parameters denoted as Input must not be changed by this procedure.

11: ISTATE(N+NCLIN) – INTEGER array Input/Output

On entry: ISTATE need not be set if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), ISTATE specifies the desired status of
the constraints at the start of the feasibility phase. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, and the next mL elements refer to the general
linear constraints (if any). Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning

0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value must not

be specified unless BLðjÞ ¼ BUðjÞ.
The values �2, �1 and 4 are also acceptable but will be reset to zero by the routine. If
E04NFF=E04NFA has been called previously with the same values of N and NCLIN, ISTATE
already contains satisfactory information. (See also the description of the optional parameter Warm
Start in Section 11.2.) The routine also adjusts (if necessary) the values supplied in X to be
consistent with ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLIN.

On exit: the status of the constraints in the working set at the point returned in X. The significance
of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 The constraint violates its lower bound by more than the feasibility tolerance.
�1 The constraint violates its upper bound by more than the feasibility tolerance.
0 The constraint is satisfied to within the feasibility tolerance, but is not in the working

set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of ISTATE

can occur only when BLðjÞ ¼ BUðjÞ.
4 This corresponds to optimality being declared with XðjÞ being temporarily fixed at its

current value. This value of ISTATE can occur only when IFAIL ¼ 1 on exit.
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12: X(N) – real array Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which E04NFF=E04NFA terminated. If IFAIL ¼ 0, 1 or 3, X contains an
estimate of the solution.

13: ITER – INTEGER Output

On exit: the total number of iterations performed.

14: OBJ – real Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type FP and x is feasible, OBJ is set to zero.

15: AX(*) – real array Output

Note: the first dimension of the array AX must be at least maxð1;NCLINÞ.
On exit: the final values of the linear constraints Ax.

If NCLIN ¼ 0, AX is not referenced.

16: CLAMDA(N+NCLIN) – real array Output

On exit: the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the variables,
and the next mL elements contain the multipliers for the general linear constraints (if any). If
ISTATEðjÞ ¼ 0 (i.e., constraint j is not in the working set), CLAMDAðjÞ is zero. If x is optimal,
CLAMDAðjÞ should be non-negative if ISTATEðjÞ ¼ 1, non-positive if ISTATEðjÞ ¼ 2 and zero if
ISTATEðjÞ ¼ 4.

17: IWORK(LIWORK) – INTEGER array Workspace
18: LIWORK – INTEGER Input

On entry: the first dimension of the array IWORK as declared in the (sub)program from which
E04NFF=E04NFA is called.

Constraint: LIWORK � 2� Nþ 3.

19: WORK(LWORK) – real array Workspace
20: LWORK – INTEGER Input

On entry: the first dimension of the array WORK as declared in the (sub)program from which
E04NFF=E04NFA is called.

Constraints:

For problems QP2 (the default) and QP4,

LWORK � 2� N2 þ 8� Nþ 5� NCLIN if NCLIN > 0,

LWORK � N2 þ 8� N if NCLIN ¼ 0.

For problems QP1 and QP3,

LWORK � 2� N2 þ 7� Nþ 5� NCLIN if NCLIN > 0,

LWORK � N2 þ 7� N if NCLIN ¼ 0.

If the problem is of type LP,

LWORK � 8� Nþ 1 if NCLIN ¼ 0,

LWORK � 2� N2 þ 8� Nþ 5� NCLIN if NCLIN � N,

LWORK � 2� ðNCLINþ 1Þ2 þ 8� Nþ 5� NCLIN otherwise.
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If the problem is of type FP,

LWORK � 7� Nþ 1 if NCLIN ¼ 0,

LWORK � 2� N2 þ 7� Nþ 5� NCLIN if NCLIN � N,

LWORK � 2� ðNCLINþ 1Þ2 þ 7� Nþ 5� NCLIN otherwise.

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK
from the formulas given above, the user may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (E04NFF=E04NFA will then terminate with
IFAIL ¼ 6.)

21: IFAIL – INTEGER Input/Output

Note: for E04NFA, IFAIL does not occur in this position in the parameter list. See the additional

parameters described below.

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04NFF=E04NFA returns with IFAIL ¼ 0 if x is a strong local minimizer, i.e., the reduced gradient
(Norm Gz; see Section 8.2) is negligible, the Lagrange multipliers (Lagr Mult; see Section 8.2) are
optimal and HR (the reduced Hessian of fðxÞ; see Section 10.2) is positive semi-definite.

Note: the following are additional parameters for specific use with E04NFA. Users of E04NFF therefore need

not read the remainder of this section.

21: IUSER(*) – INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

IUSER is not used by E04NFA, but is passed directly to the external procedure QPHESS and may
be used to pass information to that routine.

22: RUSER(*) – real array User Workspace

Note: the dimension of the array RUSER must be at least 1.

RUSER is not used by E04NFA, but is passed directly to the external procedure QPHESS and may
be used to pass information to that routine.

23: LWSAV(120) – LOGICAL array Workspace
24: IWSAV(610) – INTEGER array Workspace
25: RWSAV(475) – real array Workspace

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the routines
E04WBF, E04NFA, E04NGA or E04NHA.

26: IFAIL – INTEGER Input/Output

Note: see the parameter description for IFAIL above.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The iterations were terminated at a dead-point. The necessary conditions for optimality are satisfied
but the sufficient conditions are not. (The reduced gradient is negligible, the Lagrange multipliers

are optimal, but HR is singular or there are some very small multipliers.) If r2fðxÞ is not positive-
definite, x is not necessarily a local solution of the problem and verification of optimality requires

further information. If r2fðxÞ is positive semi-definite or the problem is of type LP, x gives the
global minimum value of the objective function, but the final x is not unique.

IFAIL ¼ 2

The solution appears to be unbounded, i.e., the objective function is not bounded below in the
feasible region. This value of IFAIL occurs if a step larger than Infinite Step Size

(default value ¼ 1020; see Section 11.2) would have to be taken in order to continue the algorithm,
or the next step would result in an element of x having magnitude larger than Infinite Bound Size

(default value ¼ 1020; see Section 11.2).

IFAIL ¼ 3

No feasible point was found, i.e., it was not possible to satisfy all the constraints to within the
feasibility tolerance. In this case, the constraint violations at the final x will reveal a value of the
tolerance for which a feasible point will exist – for example, when the feasibility tolerance for each
violated constraint exceeds its Slack (see Section 8.2) at the final point. The modified problem
(with an altered feasibility tolerance) may then be solved using a Warm Start (see Section 11.2).
You should check that there are no constraint redundancies. If the data for the constraints are
accurate only to the absolute precision �, the user should ensure that the value of the optional

parameter Feasibility Tolerance (default value ¼
ffiffi
�

p
, where � is the machine precision; see

Section 11.2) is greater than �. For example, if all elements of A are of order unity and are accurate

only to three decimal places, the optional parameter Feasibility Tolerance should be at least 10�3.

IFAIL ¼ 4

The limiting number of iterations was reached before normal termination occurred.

The values of the optional parameters Feasibility Phase Iteration Limit
(default value ¼ maxð50; 5ðnþmLÞÞ; see Section 11.2) and Optimality Phase Iteration Limit
(default value ¼ maxð50; 5ðnþmLÞÞ; see Section 11.2) may be too small. If the method appears to
be making progress (e.g., the objective function is being satisfactorily reduced), either increase the
iterations limit and rerun E04NFF=E04NFA or, alternatively, rerun E04NFF=E04NFA using the
Warm Start facility to specify the initial working set.

IFAIL ¼ 5

The reduced Hessian exceeds its assigned dimension. The algorithm needed to expand the reduced
Hessian when it was already at its maximum dimension, as specified by the optional parameter
Maximum Degrees of Freedom (default value ¼ n; see Section 11.2).

The value of the parameter Maximum Degrees of Freedom is too small. Rerun E04NFF=E04NFA
with a larger value (possibly using the Warm Start facility to specify the initial working set).

IFAIL ¼ 6

An input parameter is invalid.
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IFAIL ¼ 7

The designated problem type was not FP, LP, QP1, QP2, QP3 or QP4. Rerun E04NFF=E04NFA
with the optional parameter Problem Type (see Section 11.2) set to one of these values.

IFAIL ¼ Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning in
the working set when adding the jth constraint, it may be possible to avoid the difficulty by

increasing the magnitude of the optional parameter Feasibility Tolerance (default value ¼
ffiffi
�

p
,

where � is the machine precision; see Section 11.2) and rerunning the program. If the message
recurs even after this change, the offending linearly dependent constraint (with index ‘j’) must be
removed from the problem.

7 Accuracy

The routine implements a numerically stable active set strategy and returns solutions that are as accurate as
the condition of the problem warrants on the machine.

8 Further Comments

This section contains some comments on scaling and a description of the printed output.

8.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the problem
less sensitive to perturbations in the data, thus improving the condition of the problem. In the absence of
better information it is usually sensible to make the Euclidean lengths of each constraint of comparable
magnitude. See the E04 Chapter Introduction and Gill et al. (1981) for further information and advice.

8.2 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04NFF=E04NFA. The
intermediate printout is a subset of the monitoring information produced by the routine at every iteration
(see Section 12). The level of printed output can be controlled by the user (see the description of the
optional parameter Print Level in Section 11.2). Note that the intermediate printout and final printout are
produced only if Print Level � 10 (the default for E04NFF, by default no output is produced by
E04NFA).

The following line of summary output (< 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration, Step will be the step to the nearest constraint. When the
problem is of type LP, the step can be greater than one during the optimality phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible, Objective
is the value of the objective function of (1). The output line for the final iteration of
the feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point.

During the optimality phase the value of the objective function will be non-
increasing. During the feasibility phase the number of constraint infeasibilities will
not increase until either a feasible point is found or the optimality of the multipliers
implies that no feasible point exists. Once optimal multipliers are obtained the
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number of infeasibilities can increase, but the sum of infeasibilities will either remain
constant or be reduced until the minimum sum of infeasibilities is found.

Norm Gz is kZT
RgFRk, the Euclidean norm of the reduced gradient with respect to ZR. During

the optimality phase, this norm will be approximately zero after a unit step. (See
Section 10.2 and Section 10.3.)

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed at
its current value). If Value lies outside the upper or lower bounds by more than the

Feasibility Tolerance (default value ¼
ffiffi
�

p
, where � is the machine precision; see

Section 11.2), State will be ++ or respectively.

A key is sometimes printed before State to give some additional information about
the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable were
allowed to start moving away from its bound then there would be no change to
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is FR
unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be blank.
If x is optimal, the multiplier should be non-negative if State is LL and non-positive
if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not bounded
(i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ
respectively, and with the following change in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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9 Example

To minimize the quadratic function fðxÞ ¼ cTxþ 1
2
xTHx, where

c ¼ ð�0:02; �0:2; �0:2; �0:2; �0:2; 0:04; 0:04ÞT

H ¼

2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 2 0 0 0

0 0 2 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 �2 �2

0 0 0 0 0 �2 �2

0
BBBBBBBB@

1
CCCCCCCCA

subject to the bounds

�0:01 � x1 � 0:01
�0:1 � x2 � 0:15
�0:01 � x3 � 0:03
�0:04 � x4 � 0:02
�0:1 � x5 � 0:05
�0:01 � x6

�0:01 � x7

and to the general constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ �0:13
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � �0:0049
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � �0:0064
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � �0:0037
0:02x1 þ 0:03x2 þ 0:01x5 � �0:0012

�0:0992 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6

�0:003 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 0:002

The initial point, which is infeasible, is

x0 ¼ ð�0:01;�0:03; 0:0;�0:01;�0:1; 0:02; 0:01ÞT :
The optimal solution (to five figures) is

x� ¼ ð�0:01;�0:069865; 0:018259;�0:24261;�0:62006; 0:013805; 0:0040665ÞT :
One bound constraint and four general constraints are active at the solution.

The document for E04NGF=E04NGA includes an example program to solve the same problem using some
of the optional parameters described in E04NFF=E04NFA.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

Note: the following program illustrates the use of E04NFF. An equivalent program illustrating the use of

E04NFA is available with the supplied Library and is also available from the NAG web site.

* E04NFF Example Program Text
* Mark 18 Revised. NAG Copyright 1997.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NCMAX
PARAMETER (NMAX=10,NCMAX=10)
INTEGER LDA, LDH
PARAMETER (LDA=NCMAX,LDH=NMAX)
INTEGER LIWORK, LWORK
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PARAMETER (LIWORK=1000,LWORK=10000)
* .. Local Scalars ..

real OBJ
INTEGER I, IFAIL, ITER, J, N, NCLIN

* .. Local Arrays ..
real A(LDA,NMAX), AX(NCMAX), BL(NMAX+NCMAX),

+ BU(NMAX+NCMAX), CLAMDA(NMAX+NCMAX), CVEC(NMAX),
+ H(LDH,NMAX), WORK(LWORK), X(NMAX)
INTEGER ISTATE(NMAX+NCMAX), IWORK(LIWORK)

* .. External Subroutines ..
EXTERNAL E04NFF, E04NFU

* .. Executable Statements ..
WRITE (NOUT,*) ’E04NFF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, NCLIN
IF (N.LE.NMAX .AND. NCLIN.LE.NCMAX) THEN

*
* Read CVEC, A, BL, BU, X and H from data file
*

READ (NIN,*) (CVEC(I),I=1,N)
READ (NIN,*) ((A(I,J),J=1,N),I=1,NCLIN)
READ (NIN,*) (BL(I),I=1,N+NCLIN)
READ (NIN,*) (BU(I),I=1,N+NCLIN)
READ (NIN,*) (X(I),I=1,N)
READ (NIN,*) ((H(I,J),J=1,N),I=1,N)

*
* Solve the problem
*

IFAIL = -1
*

CALL E04NFF(N,NCLIN,A,LDA,BL,BU,CVEC,H,LDH,E04NFU,ISTATE,X,
+ ITER,OBJ,AX,CLAMDA,IWORK,LIWORK,WORK,LWORK,IFAIL)

*
END IF
STOP
END

9.2 Program Data

E04NFF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 -9.92e-02 -3.0e-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0e+25 1.0e+25

-0.13 -4.9e-03 -6.4e-03 -3.7e-03 -1.2e-03 1.0e+25 2.0e-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of X
2.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 2.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 2.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00 :End of matrix H
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9.3 Program Results

E04NFF Example Program Results

*** E04NFF
*** Start of NAG Library implementation details ***

Implementation title: Generalised Base Version
Precision: FORTRAN double precision

Product Code: FLBAS20D
Mark: 20A

*** End of NAG Library implementation details ***

Parameters
----------

Problem type........... QP2

Linear constraints..... 7 Feasibility tolerance.. 1.05E-08
Variables.............. 7 Optimality tolerance... 1.72E-13
Hessian rows........... 7 Rank tolerance......... 1.11E-14

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16

Check frequency........ 50 Expand frequency....... 5
Minimum sum of infeas.. NO Crash tolerance........ 1.00E-02

Max degrees of freedom. 7 Print level............ 10
Feasibility phase itns. 70 Monitoring file........ -1
Optimality phase itns. 70

Workspace provided is IWORK( 1000), WORK( 10000).
To solve problem we need IWORK( 17), WORK( 189).

Itn Step Ninf Sinf/Objective Norm Gz
0 0.0E+00 3 1.038000E-01 0.0E+00
1 4.1E-02 1 3.000000E-02 0.0E+00
2 4.2E-02 0 0.000000E+00 0.0E+00

Itn 2 -- Feasible point found.
2 0.0E+00 0 4.580000E-02 0.0E+00
3 1.3E-01 0 4.161596E-02 0.0E+00
4 1.0E+00 0 3.936227E-02 1.6E-17
5 4.1E-01 0 3.758935E-02 1.2E-02
6 1.0E+00 0 3.755377E-02 6.9E-18
7 1.0E+00 0 3.703165E-02 3.1E-17

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL -1.000000E-02 -1.000000E-02 1.000000E-02 0.4700 .
V 2 FR -6.986465E-02 -0.100000 0.150000 . 3.0135E-02
V 3 FR 1.825915E-02 -1.000000E-02 3.000000E-02 . 1.1741E-02
V 4 FR -2.426081E-02 -4.000000E-02 2.000000E-02 . 1.5739E-02
V 5 FR -6.200564E-02 -0.100000 5.000000E-02 . 3.7994E-02
V 6 FR 1.380544E-02 -1.000000E-02 None . 2.3805E-02
V 7 FR 4.066496E-03 -1.000000E-02 None . 1.4066E-02

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 EQ -0.130000 -0.130000 -0.130000 -1.908 -2.7756E-17
L 2 FR -5.879898E-03 None -4.900000E-03 . 9.7990E-04
L 3 UL -6.400000E-03 None -6.400000E-03 -0.3144 -1.7347E-18
L 4 FR -4.537323E-03 None -3.700000E-03 . 8.3732E-04
L 5 FR -2.915996E-03 None -1.200000E-03 . 1.7160E-03
L 6 LL -9.920000E-02 -9.920000E-02 None 1.955 -4.1633E-17
L 7 LL -3.000000E-03 -3.000000E-03 2.000000E-03 1.972 1.7347E-18
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Exit E04NFF - Optimal QP solution.

Final QP objective value = 0.3703165E-01

Exit from QP problem after 7 iterations.

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed

description of the algorithm which may be needed in order to understand Section 11 and Section 12. Section 11

describes the optional parameters which may be set by calls to E04MGF=E04MGA and/or E04MHF=E04MHA.

Section 12 describes the quantities which can be requested to monitor the course of the computation.

10 Algorithmic Details

This section contains a detailed description of the method used by E04NFF=E04NFA.

10.1 Overview

E04NFF=E04NFA is based on an inertia-controlling method that maintains a Cholesky factorization of the
reduced Hessian (see below). The method is based on that of Gill and Murray (1978), and is described in
detail by Gill et al. (1991). Here we briefly summarize the main features of the method. Where possible,
explicit reference is made to the names of variables that are parameters of E04NFF=E04NFA or appear in
the printed output. E04NFF=E04NFA has two phases: finding an initial feasible point by minimizing the
sum of infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the
feasible region (the optimality phase). The computations in both phases are performed by the same
subroutines. The two-phase nature of the algorithm is reflected by changing the function being minimized
from the sum of infeasibilities to the quadratic objective function. The feasibility phase does not perform
the standard simplex method (i.e., it does not necessarily find a vertex), except in the LP case when
mL � n. Once any iterate is feasible, all subsequent iterates remain feasible.

E04NFF=E04NFA has been designed to be efficient when used to solve a sequence of related problems –
for example, within a sequential quadratic programming method for nonlinearly constrained optimization
(e.g., E04UCF=E04UCA or E04UFF=E04UFA). In particular, you may specify an initial working set (the
indices of the constraints believed to be satisfied exactly at the solution); see the discussion of the optional
parameter Warm Start in Section 11.2.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall always
consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �xx is defined
by

�xx ¼ xþ �p ð1Þ
where the step length � is a non-negative scalar and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter Feasibility
Tolerance; see Section 11.2). The working set is the current prediction of the constraints that hold with
equality at the solution of a linearly constrained QP problem. The search direction is constructed so that
the constraints in the working set remain unaltered for any value of the step length. For a bound constraint
in the working set, this property is achieved by setting the corresponding element of the search direction to
zero. Thus, the associated variable is fixed, and specification of the working set induces a partition of x
into fixed and free variables. During a given iteration, the fixed variables are effectively removed from the
problem; since the relevant elements of the search direction are zero, the columns of A corresponding to
fixed variables may be ignored.

Let mW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (mW and nFX are the quantities Lin and Bnd in the monitoring file
output from E04NFF=E04NFA; see Section 12). Similarly, let nFR (nFR ¼ n� nFX) denote the number of
free variables. At every iteration, the variables are re-ordered so that the last nFX variables are fixed, with
all other relevant vectors and matrices ordered accordingly.
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10.2 Definition of Search Direction

Let AFR denote the mW by nFR sub-matrix of general constraints in the working set corresponding to the
free variables and let pFR denote the search direction with respect to the free variables only. The general
constraints in the working set will be unaltered by any move along p if

AFRpFR ¼ 0: ð2Þ
In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR ¼ ð0 T Þ; ð3Þ
where T is a non-singular mW by mW upper triangular matrix (i.e., tij ¼ 0 if i > j), and the non-singular

nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)). If the
columns of QFR are partitioned so that

QFR ¼ ðZ Y Þ;
where Y is nFR by mW, then the nZðnZ ¼ nFR �mWÞ columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 � nR � nZ , and let ZR denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the monitoring output from
E04NFF=E04NFA. In many cases, ZR will include all the columns of Z.) The direction pFR will satisfy (2)
if

pFR ¼ ZRpR; ð4Þ
where pR is any nR-vector.

Let Q denote the n by n matrix

Q ¼ QFR

IFX

� �
;

where IFX is the identity matrix of order nFX. Let HQ and gQ denote the n by n transformed Hessian and

transformed gradient

HQ ¼ QTHQ and gQ ¼ QT ðcþHxÞ

and let the matrix of first nR rows and columns of HQ be denoted by HR and the vector of the first nR

elements of gQ be denoted by gR. The quantities HR and gR are known as the reduced Hessian and

reduced gradient of fðxÞ, respectively. Roughly speaking, gR and HR describe the first and second
derivatives of an unconstrained problem for the calculation of pR.

At each iteration, a triangular factorization of HR is available. If HR is positive-definite, HR ¼ RTR,

where R is the upper triangular Cholesky factor of HR. If HR is not positive-definite, HR ¼ RTDR,
where D ¼ diagð1; 1; . . . ; 1; �Þ, with � � 0.

The computation is arranged so that the reduced-gradient vector is a multiple of eR, a vector of all zeros
except in the last (i.e., nRth) position. This allows the vector pR in (4) to be computed from a single back-
substitution

RpR ¼ �eR ð5Þ
where � is a scalar that depends on whether or not the reduced Hessian is positive-definite at x. In the
positive-definite case, xþ p is the minimizer of the objective function subject to the constraints (bounds
and general) in the working set treated as equalities. If HR is not positive-definite pR satisfies the
conditions

pTRHRpR < 0 and gTRpR � 0;

which allow the objective function to be reduced by any positive step of the form xþ �p.
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10.3 Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero at
non-vertices in the presence of constraint dependencies). During the optimality phase a zero reduced
gradient implies that x minimizes the quadratic objective when the constraints in the working set are
treated as equalities. At a constrained stationary point, Lagrange multipliers �C and �B for the general and
bound constraints are defined from the equations

AT
FR�C ¼ gFR and �B ¼ gFX �AT

FX�C: ð6Þ
Given a positive constant � of the order of the machine precision, a Lagrange multiplier �j corresponding

to an inequality constraint in the working set is said to be optimal if �j � � when the associated constraint

is at its upper bound, or if �j � �� when the associated constraint is at its lower bound. If a multiplier is

non-optimal, the objective function (either the true objective or the sum of infeasibilities) can be reduced
by deleting the corresponding constraint (with index Jdel; see Section 12) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero, there is
no feasible point, and you can force E04NFF=E04NFA to continue until the minimum value of the sum of
infeasibilities has been found; see the discussion of the optional parameter Minimum Sum of
Infeasibilities in Section 11.2. At such a point, the Lagrange multiplier �j corresponding to an inequality

constraint in the working set will be such that �ð1þ �Þ � �j � � when the associated constraint is at its

upper bound, and �� � �j � ð1þ �Þ when the associated constraint is at its lower bound. Lagrange

multipliers for equality constraints will satisfy j�jj � 1þ �.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the non-zero elements
of the search direction p are given by ZRpR (see (4) and (5)). The choice of step length is influenced by
the need to maintain feasibility with respect to the satisfied constraints. If HR is positive-definite and
xþ p is feasible, � will be taken as unity. In this case, the reduced gradient at �xx will be zero, and
Lagrange multipliers are computed. Otherwise, � is set to �M, the step to the ‘nearest’ constraint (with
index Jadd; see Section 12), which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of AFR

changes. Explicit representations are recurred of the matrices T , QFR and R; and of vectors QTg, and

QTc. The triangular factor R associated with the reduced Hessian is only updated during the optimality
phase.

One of the most important features of E04NFF=E04NFA is its control of the conditioning of the working
set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest diagonal
elements of the TQ factor T (the printed value Cond T; see Section 12). In constructing the initial working
set, constraints are excluded that would result in a large value of Cond T.

E04NFF=E04NFA includes a rigorous procedure that prevents the possibility of cycling at a point where
the active constraints are nearly linearly dependent (see Gill et al. (1989)). The main feature of the anti-
cycling procedure is that the feasibility tolerance is increased slightly at the start of every iteration. This
not only allows a positive step to be taken at every iteration, but also provides, whenever possible, a choice
of constraints to be added to the working set. Let �M denote the maximum step at which xþ �Mp does
not violate any constraint by more than its feasibility tolerance. All constraints at a distance � (� � �M)
along p from the current point are then viewed as acceptable candidates for inclusion in the working set.
The constraint whose normal makes the largest angle with the search direction is added to the working set.

10.4 Choosing the Initial Working Set

At the start of the optimality phase, a positive-definite HR can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive-definite by
definition, corresponding to the case when AFR contains nFR constraints.) The idea is to include as many
general constraints as necessary to ensure that the reduced Hessian is positive-definite.

Let HZ denote the matrix of the first nZ rows and columns of the matrix HQ ¼ QTHQ at the beginning of

the optimality phase. A partial Cholesky factorization is used to find an upper triangular matrix R that is
the factor of the largest positive-definite leading sub-matrix of HZ . The use of interchanges during the
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factorization of HZ tends to maximize the dimension of R. (The condition of R may be controlled using
the optional parameter Rank Tolerance; see Section 11.2.) Let ZR denote the columns of Z
corresponding to R, and let Z be partitioned as Z ¼ ðZR ZAÞ. A working set for which ZR defines the

null space can be obtained by including the rows of ZT
A as ‘artificial constraints’. Minimization of the

objective function then proceeds within the subspace defined by ZR, as described in Section 10.2.

The artificially augmented working set is given by

�AAFR ¼ ZT
A

AFR

� �
; ð7Þ

so that pFR will satisfy AFRpFR ¼ 0 and ZT
ApFR ¼ 0. By definition of the TQ factorization, �AAFR

automatically satisfies the following:

�AAFRQFR ¼ ZT
A

AFR

� �
QFR ¼ ZT

A

AFR

� �
ZR ZA Yð Þ ¼ 0 �TT

� �
;

where

�TT ¼ I 0

0 T

� �
;

and hence the TQ factorization of (7) is available trivially from T and QFR without additional expense.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is required

to ‘delete’ the artificial constraints associated with ZA when ZT
RgFR ¼ 0, since this simply involves

repartitioning QFR. The ‘artificial’ multiplier vector associated with the rows of ZT
A is equal to ZT

AgFR, and
the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that would be
obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’ from the
working set, an A appears alongside the entry in the Jdel column of the monitoring file output (see
Section 12).

The number of columns in ZA and ZR, the Euclidean norm of ZT
RgFR, and the condition estimator of R

appear in the monitoring file output as Art, Zr, Norm Gz and Cond Rz respectively (see Section 12).

Under some circumstances, a different type of artificial constraint isused when solving a linear program.
Although the algorithm of E04NFF=E04NFA does not usually perform simplex steps (in the traditional
sense), there is one exception: a linear program with fewer general constraints than variables (i.e.,
mL � n). Use of the simplex method in this situation leads to savings in storage. At the starting point,
the ‘natural’ working set (the set of constraints exactly or nearly satisfied at the starting point) is
augmented with a suitable number of ‘temporary’ bounds, each of which has the effect of temporarily
fixing a variable at its current value. In subsequent iterations, a temporary bound is treated as a standard
constraint until it is deleted from the working set, in which case it is never added again. If a temporary
bound is ‘deleted’ from the working set, an F (for ‘Fixed’) appears alongside the entry in the Jdel column
of the monitoring file output (see Section 12).

11 Optional Parameters

Several optional parameters in E04NFF=E04NFA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal parameters of E04NFF=E04NFA these optional
parameters have associated default values that are appropriate for most problems. Therefore, the user need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or both, of the routines E04NGF=E04NGA and
E04NHF=E04NHA prior to a call to E04NFF=E04NFA.
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E04NGF=E04NGA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04NGF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit.
E04NGF=E04NGA should be consulted for a full description of this method of supplying optional
parameters.

E04NHF=E04NHA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04NHF (’Print Level = 5’)

E04NHF=E04NHA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04NFF=E04NFA (unless they define invalid values) and so remain
in effect for subsequent calls unless altered by the user.

11.1 Optional parameter checklist and default values

For easy reference, the following list shows all the valid keywords and their default values. The symbol �
represents the machine precision (see X02AJF).

Optional Parameters Default Values

Check Frequency 50
Cold/Warm Start Cold Start
Crash Tolerance 0.01
Defaults
Expand Frequency 5
Feasibility Phase Iteration Limit maxð50; 5ðnþmLÞÞ
Feasibility Tolerance

ffiffi
�

p

Hessian Rows n
Infinite Bound Size 1020

Infinite Step Size maxðbigbnd; 1020Þ
Iteration Limit maxð50; 5ðnþmLÞÞ
List/Nolist List (Nolist for E04NFA)
Maximum Degrees of Freedom n
Minimum Sum of Infeasibilities No
Monitoring File �1
Optimality Phase Iteration Limit maxð50; 5ðnþmLÞÞ
Optimality Tolerance �0:8

Print Level 10 (0 for E04NFA)
Problem Type QP2
Rank Tolerance 100�

11.2 Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword,
any essential optional qualifiers, the default value, and the definition. The minimum abbreviation of each
keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be
omitted. The letter a denotes a phrase (character string) that qualifies an option. The letters i and r denote
INTEGER and real values required with certain options. The number � is a generic notation for machine
precision (see X02AJF).
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Check Frequency r Default ¼ 50

Every ith iteration, a numerical test is made to see if the current solution x satisfies the constraints in the
working set. If the largest residual of the constraints in the working set is judged to be too large, the
current working set is refactorized and the variables are recomputed to satisfy the constraints more
accurately. If i � 0, the default value is used.

Cold Start Default ¼ Cold Start
Warm Start

This option specifies how the initial working set is chosen. With a Cold Start, E04NFF=E04NFA chooses
the initial working set based on the values of the variables and constraints at the initial point. Broadly
speaking, the initial working set will include equality constraints and bounds or inequality constraints that
violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance; see below).

With a Warm Start, you must provide a valid definition of every element of the array ISTATE (see
Section 5 for the definition of this array). E04NFF=E04NFA will override the user’s specification of
ISTATE if necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any
elements of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which are set
to 3 when the corresponding elements of BL and BU are not equal. A warm start will be advantageous if a
good estimate of the initial working set is available – for example, when E04NFF=E04NFA is called
repeatedly to solve related problems.

Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04NFF=E04NFA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a

constraint of the form aTj x � l will be included in the initial working set if jaTj x� lj � rð1þ jljÞ. If r < 0

or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default ¼ 5

This option is part of an anti-cycling procedure designed to guarantee progress even on highly degenerate
problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a period
of i iterations, the feasibility tolerance actually used by E04NFF=E04NFA (i.e., the working feasibility
tolerance) increases from 0:5� to � (in steps of 0:5�=i).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities. First, all
variables whose upper or lower bounds are in the working set are moved exactly onto their bounds. A
count is kept of the number of non-trivial adjustments made. If the count is positive, iterative refinement is
used to give variables that satisfy the working set to (essentially) machine precision. Finally, the working
feasibility tolerance is reinitialised to 0:5�.

If a problem requires more than i iterations, the resetting procedure is invoked and a new cycle of i
iterations is started with i incremented by 10. (The decision to resume the feasibility phase or optimality
phase is based on comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when E04NFF=E04NFA reaches an apparently optimal, infeasible
or unbounded solution, unless this situation has already occurred twice. If any non-trivial adjustments are
made, iterations are continued.

If i � 0, the default value is used. If i � 9999999, no anti-cycling procedure is invoked.
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Feasibility Phase Iteration Limit i1 Default ¼ maxð50; 5ðnþmLÞÞ
Optimality Phase Iteration Limit i2 Default ¼ maxð50; 5ðnþmLÞÞ
For problems of type FP, the scalar i1 specifies the maximum number of iterations allowed before
temination. Setting i1 ¼ 0 and Print Level > 0 means that the workspace needed will be computed and
printed, but no iterations will be performed.

For problems of type LP, the maximum number of iterations allowed before temination is taken as
maxði1; i2Þ. Setting i1 ¼ 0, i2 ¼ 0 and Print Level > 0 means that the workspace needed will be
computed and printed, but no iterations will be performed.

For problems of type QP, the scalars i1 and i2 specify the maximum number of iterations allowed in the
feasibility and optimality phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit.
Setting i1 ¼ 0 and Print Level > 0 means that the workspace needed will be computed and printed, but no
iterations will be performed.

If i1 < 0 or i2 < 0, the default value is used.

Feasibility Tolerance r Default ¼
ffiffi
�

p

If r � �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point. For
example, if the variables and the coefficients in the general constraints are of order unity, and the latter are

correct to about 6 decimal digits, it would be appropriate to specify r as 10�6. If 0 � r < �, the default
value is used.

E04NFF=E04NFA attempts to find a feasible solution before optimizing the objective function. If the sum
of infeasibilities cannot be reduced to zero, the optional parameter Minimum Sum of Infeasibilities (see
below) can be used to find the minimum value of the sum. Let Sinf be the corresponding sum of
infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor of 10 or 100. Otherwise,
some error in the data should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance r.

Hessian Rows i Default ¼ n

Note that this option does not apply to problems of type FP or LP.

This specifies m, the number of rows of the Hessian matrix H. The default value of m is n, the number
of variables of the problem.

If the problem is of type QP then m will usually be n, the number of variables. However, a value of m
less than n is appropriate for QP3 or QP4 if H is an upper trapezoidal matrix with m rows. Similarly, m
may be used to define the dimension of a leading block of non-zeros in the Hessian matrices of QP1 or
QP2. In this case the last n�m rows and columns of H are assumed to be zero. In the QP case m
should not be greater than n; if it is, the last m� n rows of H are ignored.

If i < 0 or i > n, the default value is used.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound less
than or equal to �bigbnd will be regarded as minus infinity). If r � 0, the default value is used.

Infinite Step Size r Default ¼ maxðbigbnd; 1020Þ
If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive-
definite.) If the change in x during an iteration would exceed the value of rthen the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.
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Iteration Limit i Default ¼ maxð50; 5ðnþmLÞÞ
Iters
Itns

See Feasibility Phase Iteration Limit above.

List Default for E04NFF ¼ List
Nolist Default for E04NFA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Nolist may be used to suppress
the printing and List may be used to restore printing.

Maximum Degrees of Freedom i Default ¼ n

Note that this option does not apply to problems of type FP or LP.

This places a limit on the storage allocated for the triangular factor R of the reduced Hessian HR. Ideally,
i should be set slightly larger than the value of nR expected at the solution. It need not be larger than
mN þ 1, where mN is the number of variables that appear nonlinearly in the quadratic objective function.
For many problems it can be much smaller than mN.

For quadratic problems, a minimizer may lie on any number of constraints, so that nR may vary between 1
and n. The default value of i is therefore the number of variables n. If Hessian Rows m is specified, the
default value of i is the same number, m.

Minimum Sum of Infeasibilities a Default ¼ No

If no feasible point exists for the constraints then this option is used to control whether or not
E04NFF=E04NFA will calculate a point that minimizes the constraint violations. If Minimum Sum of
Infeasibilities ¼ No, E04NFF=E04NFA will terminate as soon as it is evident that no feasible point exists
for the constraints. The final point will generally not be the point at which the sum of infeasibilities is
minimized. If Minimum Sum of Infeasibilities ¼ Yes, E04NFF=E04NFA will continue until the sum of
infeasibilities is minimized.

Monitoring File i Default ¼ �1

If i � 0 and Print Level � 5 (see below), monitoring information produced by E04NFF=E04NFA at every
iteration is sent to a file with logical unit number i.

If i < 0 and/or Print Level < 5, no monitoring information is produced.

Optimality Phase Iteration Limit i Default ¼ maxð50; 5ðnþmLÞÞ
See Feasibility Phase Iteration Limit above.

Optimality Tolerance r Default ¼ �0:8

If r � �, r defines the tolerance used to determine if the bounds and general constraints have the right
‘sign’ for the solution to be judged to be optimal.

If 0 � r < �, the default value is used.

Print Level i Default for E04NFF ¼ 10
Default for E04NFA ¼ 0

The value of i controls the amount of printout produced by E04NFF=E04NFA, as indicated below. A
detailed description of the printed output is given in Section 8.2 (summary output at each iteration and the
final solution) and Section 12 (monitoring information at each iteration). If i < 0, the default value is
used.
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The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.
1 The final solution only.
5 One line of summary output (< 80 characters; see Section 8.2) for each iteration (no printout of the

final solution).
� 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File (see above):

i Output

< 5 No output.
� 5 One long line of output (> 80 characters; see Section 12) for each iteration (no printout of the final

solution).
� 20 At each iteration: the Lagrange multipliers, the variables x, the constraint values Ax and the

constraint status.
� 30 At each iteration: the diagonal elements of the upper triangular matrix T associated with the TQ

factorization (3) (see Section 10.2) of the working set and the diagonal elements of the upper
triangular matrix R.

If Print Level � 5 and the unit number defined by Monitoring File is the same as that defined by
X04ABF then the summary output is suppressed.

Problem Type a Default ¼ QP2

This option specifies the type of objective function to be minimized during the optimality phase. The
following are the five optional keywords and the dimensions of the arrays that must be specified in order to
define the objective function:

LP H not referenced, CVEC(N) required;
QP1 H(LDH,*) symmetric, CVEC not referenced;
QP2 H(LDH,*) symmetric, CVEC(N) required;
QP3 H(LDH,*) upper trapezoidal, CVEC not referenced;
QP4 H(LDH,*) upper trapezoidal, CVEC(N) required.

For problems of type FP the objective function is omitted and neither H nor CVEC are referenced.

The following keywords are also acceptable. The minimum abbreviation of each keyword is underlined.

a Option
Quadratic QP2
Linear LP
Feasible FP

In addition, the keyword QP is equivalent to the default option QP2.

If H ¼ 0 (i.e., the objective function is purely linear), the efficiency of E04NFF=E04NFA may be
increased by specifying a as LP.

Rank Tolerance r Default ¼ 100�

Note that this option does not apply to problems of type FP or LP.

This parameter enables the user to control the condition number of the triangular factor R (see Section 10).
If 	i denotes the function 	i ¼ maxfjR11j; jR22j; . . . ; jRiijg, the dimension of R is defined to be smallest

index i such that jRiþ1;iþ1j �
ffiffiffi
r

p
j	iþ1j. If r � 0, the default value is used.

Warm Start

See Cold Start above.
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12 Description of Monitoring Information

This section describes the long line of output (> 80 characters) which forms part of the monitoring
information produced by E04NFF=E04NFA. (See also the description of the optional parameters
Monitoring File and Print Level in Section 11.2.) The level of printed output can be controlled by the
user.

To aid interpretation of the printed results the following convention is used for numbering the constraints:
indices 1 through n refer to the bounds on the variables and indices nþ 1 through nþmL refer to the
general constraints. When the status of a constraint changes, the index of the constraint is printed, along
with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A
(artificial constraint).

When Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
iteration on the unit number specified by Monitoring File. In all cases the values of the quantities printed
are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no constraint
was added.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration, Step will be the step to the nearest constraint. When the
problem is of type LP, the step can be greater than one during the optimality phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible, Objective
is the value of the objective function of (1). The output line for the final iteration of
the feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point.

During the optimality phase the value of the objective function will be non-
increasing. During the feasibility phase the number of constraint infeasibilities will
not increase until either a feasible point is found or the optimality of the multipliers
implies that no feasible point exists. Once optimal multipliers are obtained the
number of infeasibilities can increase, but the sum of infeasibilities will either remain
constant or be reduced until the minimum sum of infeasibilities is found.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of columns
of ZA (see Section 10.4).

Zr is the number of columns of Z1 (see Section 10.2). Zr is the dimension of the
subspace in which the objective function is currently being minimized. The value of
Zr is the number of variables minus the number of constraints in the working set; i.e.,
Zr ¼ n� ðBndþ Linþ ArtÞ.
The value of nZ , the number of columns of Z (see Section 10.2) can be calculated as
nZ ¼ n� ðBndþ LinÞ. A zero value of nZ implies that x lies at a vertex of the
feasible region.

Norm Gz is kZT
RgFRk, the Euclidean norm of the reduced gradient with respect to ZR. During

the optimality phase, this norm will be approximately zero after a unit step.

NOpt is the number of non-optimal Lagrange multipliers at the current point. NOpt is not
printed if the current x is infeasible or no multipliers have been calculated. At a
minimizer, NOpt will be zero.
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Min Lm is the value of the Lagrange multiplier associated with the deleted constraint. If
Min Lm is negative, a lower bound constraint has been deleted, if Min Lm is positive,
an upper bound constraint has been deleted. If no multipliers are calculated during a
given iteration Min Lm will be zero.

Cond T is a lower bound on the condition number of the working set.

Cond Rz is a lower bound on the condition number of the triangular factor R (the Cholesky
factor of the current reduced Hessian; see Section 10.2). If the problem is specified
to be of type LP then Cond Rz is not printed.

Rzz is the last diagonal element � of the matrix D associated with the RTDR
factorization of the reduced Hessian HR (see Section 10.2). Rzz is only printed if
HR is not positive-definite (in which case � 6¼ 1). If the printed value of Rzz is
small in absolute value then HR is approximately singular. A negative value of Rzz
implies that the objective function has negative curvature on the current working set.
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