
NAG Fortran Library Routine Document

E04LBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

E04LBF is a comprehensive modified Newton algorithm for finding:

an unconstrained minimum of a function of several variables

a minimum of a function of several variables subject to fixed upper and/or lower bounds on the
variables.

First and second derivatives are required. The routine is intended for functions which have continuous first
and second derivatives (although it will usually work even if the derivatives have occasional
discontinuities).

2 Specification

SUBROUTINE E04LBF(N, FUNCT, HESS, MONIT, IPRINT, MAXCAL, ETA, XTOL,
1 STEPMX, IBOUND, BL, BU, X, HESL, LH, HESD, ISTATE, F,
2 G, IW, LIW, W, LW, IFAIL)

INTEGER N, IPRINT, MAXCAL, IBOUND, LH, ISTATE(N), IW(LIW),
1 LIW, LW, IFAIL
real ETA, XTOL, STEPMX, BL(N), BU(N), X(N), HESL(LH),

1 HESD(N), F, G(N), W(LW)
EXTERNAL FUNCT, HESS, MONIT

3 Description

This routine is applicable to problems of the form:

Minimize F ðx1; x2; . . . ; xnÞ subject to lj � xj � uj; j ¼ 1; 2; . . . ; n:

Special provision is made for unconstrained minimization (i.e., problems which actually have no bounds
on the xj), problems which have only non-negativity bounds, and problems in which l1 ¼ l2 ¼ � � � ¼ ln
and u1 ¼ u2 ¼ � � � ¼ un. It is possible to specify that a particular xj should be held constant. The user

must supply a starting point, a subroutine FUNCT to calculate the value of F ðxÞ and its first derivatives

@F

@xj
at any point x, and a subroutine HESS to calculate the second derivatives

@2F

@xi@xj
.

A typical iteration starts at the current point x where nz (say) variables are free from both their bounds.
The vector of first derivatives of F ðxÞ with respect to the free variables, gz, and the matrix of second
derivatives with respect to the free variables, H, are obtained. (These both have dimension nz.)

The equations

ðH þ EÞpz ¼ �gz

are solved to give a search direction pz. (The matrix E is chosen so that H þ E is positive-definite.)

pz is then expanded to an n-vector p by the insertion of appropriate zero elements; � is found such that
F ðxþ �pÞ is approximately a minimum (subject to the fixed bounds) with respect to �, and x is replaced
by xþ �p. (If a saddle point is found, a special search is carried out so as to move away from the saddle
point.)

If any variable actually reaches a bound, it is fixed and nz is reduced for the next iteration.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria are
satisfied, the Lagrange-multipliers are estimated for all active constraints. If any Lagrange-multiplier

E04 – Minimizing or Maximizing a Function E04LBF

[NP3546/20A] E04LBF.1

estimate is significantly negative, then one of the variables associated with a negative Lagrange-multiplier
estimate is released from its bound and the next search direction is computed in the extended subspace
(i.e., nz is increased). Otherwise, minimization continues in the current subspace until the stronger criteria
are satisfied. If at this point there are no negative or near-zero Lagrange-multiplier estimates, the process is
terminated.

If the user specifies that the problem is unconstrained, E04LBF sets the lj to �106 and the uj to 106.

Thus, provided that the problem has been sensibly scaled, no bounds will be encountered during the
minimization process and E04LBF will act as an unconstrained minimization algorithm.

4 References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent methods
NPL Report NAC 37 National Physical Laboratory

Gill P E and Murray W (1974) Newton-type methods for unconstrained and linearly constrained
optimization Math. Program. 7 311–350

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Parameters

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: FUNCT – SUBROUTINE, supplied by the user. External Procedure

FUNCT must evaluate the function F ðxÞ and its first derivatives
@F

@xj

at any point x. (However, if

the user does not wish to calculate F ðxÞ or its first derivatives at a particular x, there is the option
of setting a parameter to cause E04LBF to terminate immediately.)

Its specification is:

SUBROUTINE FUNCT(IFLAG, N, XC, FC, GC, IW, LIW, W, LW)

INTEGER IFLAG, N, IW(LIW), LIW, LW
real XC(N), FC, GC(N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will have been set to 2.

On exit: if it is not possible to evaluate F ðxÞ or its first derivatives at the point x given in
XC (or if it is wished to stop the calculation for any other reason) the user should reset
IFLAG to some negative number and return control to E04LBF. E04LBF will then
terminate immediately with IFAIL set to the user’s setting of IFLAG.

2: N – INTEGER Input

On entry: the number n of variables.

3: XC(N) – real array Input

On entry: the point x at which F and the
@F

@xj

are required.

E04LBF NAG Fortran Library Manual

E04LBF.2 [NP3546/20A]

4: FC – real Output

On exit: unless IFLAG is reset, FUNCT must set FC to the value of the objective function
F at the current point x.

5: GC(N) – real array Output

On exit: unless IFLAG is reset, FUNCT must set GCðjÞ to the value of the first derivative
@F

@xj

at the point x, for j ¼ 1; 2; . . . ; n.

6: IW(LIW) – INTEGER array Workspace
7: LIW – INTEGER Input
8: W(LW) – real array Workspace
9: LW – INTEGER Input

FUNCT is called with the same parameters IW, LIW, W and LW as for E04LBF. They are
present so that, when other library routines require the solution of a minimization
subproblem, constants needed for the function evaluation can be passed through IW and
W. Similarly, users could use elements 3; 4; . . . ;LIW of IW and elements from
maxð8; 7� Nþ N� ðN� 1Þ=2Þ þ 1 onwards of W for passing quantities to FUNCT from
the (sub)program which calls E04LBF. However, because of the danger of mistakes in
partitioning, it is recommended that users should pass information to FUNCT via
COMMON and not use IW or W at all. In any case FUNCT must not change the first 2
elements of IW or the first maxð8; 7� Nþ N� ðN� 1Þ=2Þ elements of W.

FUNCT must be declared as EXTERNAL in the (sub)program from which E04LBF is called.
Parameters denoted as Input must not be changed by this procedure.

Note: FUNCT should be tested separately before being used in conjunction with E04LBF.

3: HESS – SUBROUTINE, supplied by the user. External Procedure

HESS must calculate the second derivatives of F at any point x. (As with FUNCT, there is the
option of causing E04LBF to terminate immediately.)

Its specification is:

SUBROUTINE HESS(IFLAG, N, XC, FHESL, LH, FHESD, IW, LIW, W, LW)

INTEGER IFLAG, N, LH, IW(LIW), LIW, LW
real XC(N), FHESL(LH), FHESD(N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG is set to a non-negative number.

On exit: if HESS resets IFLAG to some negative number, E04LBF will terminate
immediately with IFAIL set to the user’s setting of IFLAG.

2: N – INTEGER Input

On entry: the number n of variables.

3: XC(N) – real array Input

On entry: the point x at which the second derivatives of F are required.

E04 – Minimizing or Maximizing a Function E04LBF

[NP3546/20A] E04LBF.3

4: FHESL(LH) – real array Output

On exit: unless IFLAG is reset, HESS must place the strict lower triangle of the second
derivative matrix of F (evaluated at the point x) in FHESL, stored by rows, i.e., set

FHESLðði� 1Þði� 2Þ=2þ jÞ ¼ @2F

@xi@xj

����
XC

, for i ¼ 2; 3; . . . ; n; j ¼ 1; 2; . . . ; i� 1. (The

upper triangle is not required because the matrix is symmetric.)

5: LH – INTEGER Input

On entry: the length of the array FHESL.

6: FHESD(N) – real array Input/Output

On entry: the value of
@F

@xj
at the point x, for j ¼ 1; 2; . . . ; n.

These values may be useful in the evaluation of the second derivatives.

On exit: unless IFLAG is reset, HESS must place the diagonal elements of the second

derivative matrix of F (evaluated at the point x) in FHESD, i.e., set FHESDðjÞ ¼ @2F

@x2
j

����
XC

,

j ¼ 1; 2; . . . ; n.

7: IW(LIW) – INTEGER array Workspace
8: LIW – INTEGER Input
9: W(LW) – real array Workspace
10: LW – INTEGER Input

As in FUNCT, these parameters correspond to the parameters IW, LIW, W, LW of
E04LBF. HESS must not change the first two elements of IW or the first
maxð8; 7� Nþ N� ðN� 1Þ=2Þ elements of W. Again, it is recommended that the user
should pass quantities to HESS via COMMON and not use IW or W at all.

HESS must be declared as EXTERNAL in the (sub)program from which E04LBF is called.
Parameters denoted as Input must not be changed by this procedure.

Note: HESS should be tested separately before being used in conjunction with E04LBF.

4: MONIT – SUBROUTINE, supplied by the user. External Procedure

If IPRINT � 0, the user must supply a subroutine MONIT which is suitable for monitoring the
minimization process. MONIT must not change the values of any of its parameters. If
IPRINT < 0, a routine MONIT with the correct parameter list should still be supplied, although it
will not be called.

Its specification is:

SUBROUTINE MONIT(N, XC, FC, GC, ISTATE, GPJNRM, COND, POSDEF, NITER,
1 NF, IW, LIW, W, LW)

INTEGER N, ISTATE(N), NITER, NF, IW(LIW), LIW, LW
real XC(N), FC, GC(N), GPJNRM, COND, W(LW)
LOGICAL POSDEF

1: N – INTEGER Input

On entry: the number n of variables.

2: XC(N) – real array Input

On entry: the co-ordinates of the current point x.

E04LBF NAG Fortran Library Manual

E04LBF.4 [NP3546/20A]

3: FC – real Input

On entry: the value of F ðxÞ at the current point x.

4: GC(N) – real array Input

On entry: the value of
@F

@xj
at the current point x, for j ¼ 1; 2; . . . ; n.

5: ISTATE(N) – INTEGER array Input

On entry: information about which variables are currently fixed on their bounds and which
are free.

If ISTATEðjÞ is negative, xj is currently:

fixed on its upper bound if ISTATEðjÞ ¼ �1;

fixed on its lower bound if ISTATEðjÞ ¼ �2;

effectively a constant (i.e., lj ¼ uj) if ISTATEðjÞ ¼ �3.

If ISTATE is positive, its value gives the position of xj in the sequence of free variables.

6: GPJNRM – real Input

On entry: the Euclidean norm of the projected gradient vector gz.

7: COND – real Input

On entry: the ratio of the largest to the smallest elements of the diagonal factor D of the
projected Hessian matrix (see specification of HESS below). This quantity is usually a
good estimate of the condition number of the projected Hessian matrix. (If no variables
are currently free, COND is set to zero.)

8: POSDEF – LOGICAL Input

On entry: POSDEF is set .TRUE. or .FALSE. according to whether the second derivative
matrix for the current subspace, H, is positive-definite or not.

9: NITER – INTEGER Input

On entry: the number of iterations (as outlined in Section 3) which have been performed
by E04LBF so far.

10: NF – INTEGER Input

On entry: the number of times that FUNCT has been called so far. Thus NF is the number
of function and gradient evaluations made so far.

11: IW(LIW) – INTEGER array Workspace
12: LIW – INTEGER Input
13: W(LW) – real array Workspace
14: LW – INTEGER Input

As in FUNCT, and HESS, these parameters correspond to the parameters IW, LIW, W, LW
of E04LBF. They are included in MONIT’s parameter list primarily for when E04LBF is
called by other library routines.

MONIT must be declared as EXTERNAL in the (sub)program from which E04LBF is called.
Parameters denoted as Input must not be changed by this procedure.

The user should normally print out FC, GPJNRM and COND so as to be able to compare the
quantities mentioned in Section 7. It is normally helpful to examine XC, POSDEF and NF as well.

E04 – Minimizing or Maximizing a Function E04LBF

[NP3546/20A] E04LBF.5

5: IPRINT – INTEGER Input

On entry: the frequency with which MONIT is to be called. If IPRINT > 0, MONIT is called once
every IPRINT iterations and just before exit from E04LBF. If IPRINT ¼ 0, MONIT is just called at
the final point. If IPRINT < 0, MONIT is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT ¼ 1.

6: MAXCAL – INTEGER Input

On entry: the maximum permitted number of evaluations of F ðxÞ, i.e., the maximum permitted
number of calls of FUNCT.

Suggested value: MAXCAL ¼ 50� N.

Constraint: MAXCAL � 1.

7: ETA – real Input

On entry: every iteration of E04LBF involves a linear minimization (i.e., minimization of
F ðxþ �pÞ with respect to �). ETA specifies how accurately these linear minimizations are to be
performed. The minimum with respect to � will be located more accurately for small values of
ETA (say 0.01) than for large values (say 0.9).

Although accurate linear minimizations will generally reduce the number of iterations of E04LBF,
this usually results in an increase in the number of function and gradient evaluations required for
each iteration. On balance, it is usually more efficient to perform a low accuracy linear
minimization.

Suggested value: ETA ¼ 0:9 is usually a good choice although a smaller value may be warranted if
the matrix of second derivatives is expensive to compute compared with the function and first
derivatives.

If N ¼ 1, ETA should be set to 0.0 (also when the problem is effectively 1-dimensional even
though n > 1; i.e., if for all except one of the variables the lower and upper bounds are equal).

Constraint: 0:0 � ETA < 1:0.

8: XTOL – real Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position prior to a normal

exit, is such that kxsol � xtruek < XTOL� ð1:0þ kxtruekÞ, where kyk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 yj
2

q
. For example,

if the elements of xsol are not much larger than 1.0 in modulus, and if XTOL is set to 10�5 then xsol

is usually accurate to about 5 decimal places. (For further details see Section 7.)

If the problem is scaled roughly as described in Section 8 and � is the machine precision, then
ffiffi
�

p

is probably the smallest reasonable choice for XTOL. (This is because, normally, to machine

accuracy, F ðxþ
ffiffi
�

p
ejÞ ¼ F ðxÞ where ej is any column of the identity matrix.)

If the user sets XTOL to 0.0 (or any positive value less than �), E04LBF will use 10:0�
ffiffi
�

p
instead

of XTOL.

Suggested value: XTOL ¼ 0:0.

Constraint: XTOL � 0:0.

9: STEPMX – real Input

On entry: an estimate of the Euclidean distance between the solution and the starting point supplied
by the user. (For maximum efficiency a slight overestimate is preferable.)

E04LBF NAG Fortran Library Manual

E04LBF.6 [NP3546/20A]

E04LBF will ensure that, for each iteration,
ffi
Xn
j¼1

x
ðkÞ
j � x

ðk�1Þ
j

h i2
vuut � STEPMX

where k is the iteration number. Thus, if the problem has more than one solution, E04LBF is most
likely to find the one nearest to the starting point. On difficult problems, a realistic choice can

prevent the sequence of xðkÞ entering a region where the problem is ill-behaved and can also help to
avoid possible overflow in the evaluation of F ðxÞ. However, an underestimate of STEPMX can
lead to inefficiency.

Suggested value: STEPMX ¼ 100000:0.

Constraint: STEPMX � XTOL.

10: IBOUND – INTEGER Input

On entry: specifies whether the problem is unconstrained or bounded. If there are bounds on the
variables, IBOUND can be used to indicate whether the facility for dealing with bounds of special
forms is to be used. It must be set to one of the following values:

IBOUND ¼ 0

If the variables are bounded and the user will be supplying all the lj and uj individually.

IBOUND ¼ 1

If the problem is unconstrained.

IBOUND ¼ 2

If the variables are bounded, but all the bounds are of the form 0 � xj.

IBOUND ¼ 3

If all the variables are bounded, and l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un.

IBOUND ¼ 4

If the problem is unconstrained. (The IBOUND ¼ 4 option is provided purely for
consistency with other routines. In E04LBF it produces the same effect as IBOUND ¼ 1.)

Constraint: 0 � IBOUND � 4.

11: BL(N) – real array Input/Output

On entry: the fixed lower bounds lj.

If IBOUND is set to 0, the user must set BLðjÞ to lj, for j ¼ 1; 2; . . . ; n. (If a lower bound is not

specified for any xj, the corresponding BLðjÞ should be set to a large negative number, e.g., �106.)

If IBOUND is set to 3, the user must set BL(1) to l1; E04LBF will then set the remaining elements
of BL equal to BL(1).

If IBOUND is set to 1, 2 or 4, BL will be initialised by E04LBF.

On exit: the lower bounds actually used by E04LBF, e.g., if IBOUND ¼ 2,
BLð1Þ ¼ BLð2Þ ¼ � � � ¼ BLðNÞ ¼ 0:0.

12: BU(N) – real array Input/Output

On entry: the fixed upper bounds uj.

If IBOUND is set to 0, the user must set BUðjÞ to uj, for j ¼ 1; 2; . . . ; n. (If an upper bound is not

specified for any variable, the corresponding BUðjÞ should be set to a large positive number, e.g.,

106.)

E04 – Minimizing or Maximizing a Function E04LBF

[NP3546/20A] E04LBF.7

If IBOUND is set to 3, the user must set BU(1) to u1; E04LBF will then set the remaining elements
of BU equal to BU(1).

If IBOUND is set to 1, 2 or 4, BU will then be initialised by E04LBF.

On exit: the upper bounds actually used by E04LBF, e.g., if IBOUND ¼ 2,

BUð1Þ ¼ BUð2Þ ¼ � � � ¼ BUðNÞ ¼ 106.

13: X(N) – real array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of minimum, for
j ¼ 1; 2; . . . ; n.

On exit: the final point xðkÞ. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth component of the estimated
position of the minimum.

14: HESL(LH) – real array Output

See description of HESD below.

15: LH – INTEGER Input

On entry: the actual length of HESL as declared in the (sub)program from which E04LBF is called.

Constraint: LH � maxðN� ðN� 1Þ=2; 1Þ.

16: HESD(N) – real array Output

On exit: during the determination of a direction pz (see Section 3), H þ E is decomposed into the

product LDLT , where L is a unit lower triangular matrix and D is a diagonal matrix. (The matrices
H, E, L and D are all of dimension nz, where nz is the number of variables free from their bounds.
H consists of those rows and columns of the full second derivative matrix which relate to free
variables. E is chosen so that H þ E is positive-definite.)

HESL and HESD are used to store the factors L and D. The elements of the strict lower triangle of
L are stored row by row in the first nzðnz � 1Þ=2 positions of HESL. The diagonal elements of D
are stored in the first nz positions of HESD.

In the last factorization before a normal exit, the matrix E will be zero, so that HESL and HESD
will contain, on exit, the factors of the final second derivative matrix H. The elements of HESD are
useful for deciding whether to accept the result produced by E04LBF (see Section 7).

17: ISTATE(N) – INTEGER array Output

On exit: information about which variables are currently on their bounds and which are free. If
ISTATEðjÞ is:

equal to �1, xj is fixed on its upper bound

equal to �2, xj is fixed on its lower bound

equal to �3, xj is effectively a constant (i.e., lj ¼ uj)

positive, ISTATEðjÞ gives the position of xj in the sequence of free variables.

18: F – real Output

On exit: the function value at the final point given in X.

19: G(N) – real array Output

On exit: the first derivative vector corresponding to the final point given in X. The components of
G corresponding to free variables should normally be close to zero.

E04LBF NAG Fortran Library Manual

E04LBF.8 [NP3546/20A]

20: IW(LIW) – INTEGER array Workspace
21: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04LBF is
called.

Constraint: LIW � 2.

22: W(LW) – real array Workspace
23: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04LBF is
called.

Constraint: LW � maxð7� Nþ N� ðN� 1Þ=2; 8Þ.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04LBF because the user has set IFLAG negative
in FUNCT or HESS. The value of IFAIL will be the same as the user’s setting of IFLAG.

IFAIL ¼ 1

On entry, N < 1,
or MAXCAL < 1,
or ETA < 0:0,
or ETA � 1:0,
or XTOL < 0:0,
or STEPMX < XTOL,
or IBOUND < 0,
or IBOUND > 4,
or BLðjÞ > BUðjÞ for some j if IBOUND ¼ 0,
or BLð1Þ > BUð1Þ if IBOUND ¼ 3,
or LH < maxð1;N� ðN� 1Þ=2Þ,
or LIW < 2,
or LW < maxð8; 7� Nþ N� ðN� 1Þ=2Þ.
(Note that if the user has set XTOL to 0.0, E04LBF uses the default value and continues without
failing.) When this exit occurs no values will have been assigned to F or to the elements of HESL,
HESD or G.

E04 – Minimizing or Maximizing a Function E04LBF

[NP3546/20A] E04LBF.9

IFAIL ¼ 2

There have been MAXCAL function evaluations. If steady reductions in F ðxÞ were monitored up
to the point where this exit occurred, then the exit probably occurred simply because MAXCAL was
set too small, so the calculations should be restarted from the final point held in x. This exit may
also indicate that F ðxÞ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met, but a lower point could not be found.

Provided that, on exit, the first derivatives of F ðxÞ with respect to the free variables are sufficiently
small, and that the estimated condition number of the second derivative matrix is not too large, this
error exit may simply mean that, although it has not been possible to satisfy the specified
requirements, the algorithm has in fact found the minimum as far as the accuracy of the machine
permits. Such a situation can arise, for instance, if XTOL has been set so small that rounding errors
in the evaluation of F ðxÞ or its derivatives make it impossible to satisfy the convergence conditions.

If the estimated condition number of the second derivative matrix at the final point is large, it could
be that the final point is a minimum, but that the smallest eigenvalue of the Hessian matrix is so
close to zero that it is not possible to recognise the point as a minimum.

IFAIL ¼ 4

Not used. (This is done to make the significance of IFAIL ¼ 5 similar for E04KDF and E04LBF.)

IFAIL ¼ 5

All the Lagrange-multiplier estimates which are not indisputably positive lie relatively close to zero,
but it is impossible either to continue minimizing on the current subspace or to find a feasible lower
point by releasing and perturbing any of the fixed variables. The user should investigate as for
IFAIL ¼ 3.

The values IFAIL ¼ 2, 3 and 5 may also be caused by mistakes in FUNCT or HESS, by the formulation of
the problem or by an awkward function. If there are no such mistakes, it is worth restarting the
calculations from a different starting point (not the point at which the failure occurred) in order to avoid
the region which caused the failure.

7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04LBF when HðkÞ is positive-definite and when (B1, B2 and
B3) or B4 hold, where

B1 � �ðkÞ � kpðkÞk < ðXTOLþ
ffiffi
�

p
Þ � ð1:0þ kxðkÞkÞ

B2 � jF ðkÞ � F ðk�1Þj < ðXTOL2 þ �Þ � ð1:0þ jF ðkÞjÞ
B3 � kgðkÞz k < ð�1=3 þ XTOLÞ � ð1:0þ jF ðkÞjÞ
B4 � kgðkÞz k < 0:01�

ffiffi
�

p
:

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in Section 3. �
is the machine precision and k:k denotes the Euclidean norm.)

If IFAIL ¼ 0, then the vector in X on exit, xsol, is almost certainly an estimate of the position of the
minimum, xtrue, to the accuracy specified by XTOL.

If IFAIL ¼ 3 or 5, xsol may still be a good estimate of xtrue, but the following checks should be made.
Let the largest of the first nz elements of HESD be HESDðbÞ, let the smallest be HESDðsÞ, and define
k ¼ HESDðbÞ=HESDðsÞ. The scalar k is usually a good estimate of the condition number of the projected
Hessian matrix at xsol. If

(i) the sequence fF ðxðkÞÞg converges to F ðxsolÞ at a superlinear or fast linear rate,

(ii) kgzðxsolÞk2 < 10:0� �, and

(iii) k < 1:0=kgzðxsolÞk,

E04LBF NAG Fortran Library Manual

E04LBF.10 [NP3546/20A]

then it is almost certain that xsol is a close approximation to the position of a minimum. When (ii) is true,
then usually F ðxsolÞ is a close approximation to F ðxtrueÞ. The quantities needed for these checks are all
available via MONIT; in particular the value of COND in the last call of MONIT before exit gives k.

Further suggestions about confirmation of a computed solution are given in the E04 Chapter Introduction.

8 Further Comments

8.1 Timing

The number of iterations required depends on the number of variables, the behaviour of F ðxÞ, the accuracy
demanded and the distance of the starting point from the solution. The number of multiplications

performed in an iteration of E04LBF is
n3
z

6
þ Oðn2

zÞ. In addition, each iteration makes one call of HESS

and at least one call of FUNCT. So, unless F ðxÞ and its derivatives can be evaluated very quickly, the run
time will be dominated by the time spent in FUNCT and HESS.

8.2 Scaling

Ideally, the problem should be scaled so that, at the solution, F ðxÞ and the corresponding values of the xj

are each in the range ð�1;þ1Þ; and so that at points one unit away from the solution, F ðxÞ differs from its
value at the solution by approximately one unit. This will usually imply that the Hessian matrix at the
solution is well-conditioned. It is unlikely that the user will be able to follow these recommendations very
closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the
minimization problem, so that E04LBF will take less computer time.

8.3 Unconstrained Minimization

If a problem is genuinely unconstrained and has been scaled sensibly, the following points apply:

(a) nz will always be n,

(b) HESL and HESD will be factors of the full second derivative matrix with elements stored in the
natural order,

(c) the elements of g should all be close to zero at the final point,

(d) the values of the ISTATEðjÞ given by MONIT and on exit from E04LBF are unlikely to be of interest

(unless they are negative, which would indicate that the modulus of one of the xj has reached 106 for

some reason),

(e) MONIT’s parameter GPJNRM simply gives the norm of the first derivative vector.

So the following routine (in which partitions of extended workspace arrays are used as BL, BU and
ISTATE) could be used for unconstrained problems:

SUBROUTINE UNCLBF(N,FUNCT,HESS,MONIT,IPRINT,MAXCAL,ETA,XTOL,
* STEPMX,X,HESL,LH,HESD,F,G,IWORK,LIWORK,WORK,
* LWORK,IFAIL)

C
C A ROUTINE TO APPLY E04LBF TO UNCONSTRAINED PROBLEMS.
C
C THE REAL ARRAY WORK MUST BE OF DIMENSION AT LEAST
C (9*N + MAX(1, N*(N-1)/2)). ITS FIRST 7*N + MAX(1, N*(N-1)/2)
C ELEMENTS WILL BE USED BY E04LBF AS THE ARRAY W. ITS LAST
C 2*N ELEMENTS WILL BE USED AS THE ARRAYS BL AND BU.
C
C THE INTEGER ARRAY IWORK MUST BE OF DIMENSION AT LEAST (N+2)
C ITS FIRST 2 ELEMENTS WILL BE USED BY E04LBF AS THE ARRAY IW.
C ITS LAST N ELEMENTS WILL BE USED AS THE ARRAY ISTATE.
C
C LIWORK AND LWORK MUST BE SET TO THE ACTUAL LENGTHS OF IWORK
C AND WORK RESPECTIVELY, AS DECLARED IN THE CALLING SEGMENT.
C
C OTHER PARAMETERS ARE AS FOR E04LBF.
C

E04 – Minimizing or Maximizing a Function E04LBF

[NP3546/20A] E04LBF.11

C .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

C .. Scalar Arguments ..
real ETA, F, STEPMX, XTOL
INTEGER IFAIL, IPRINT, LH, LIWORK, LWORK, MAXCAL, N

C .. Array Arguments ..
real G(N), HESD(N), HESL(LH), WORK(LWORK), X(N)
INTEGER IWORK(LIWORK)

C .. Subroutine Arguments ..
EXTERNAL FUNCT, HESS, MONIT

C .. Local Scalars ..
INTEGER IBOUND, J, JBL, JBU, NH
LOGICAL TOOBIG

C .. External Subroutines ..
EXTERNAL E04LBF

C .. Executable Statements ..
C CHECK THAT SUFFICIENT WORKSPACE HAS BEEN SUPPLIED

NH = N*(N-1)/2
IF (NH.EQ.0) NH = 1
IF (LWORK.LT.9*N+NH .OR. LIWORK.LT.N+2) THEN
WRITE (NOUT,FMT=99999)
STOP
END IF

C JBL AND JBU SPECIFY THE PARTS OF WORK USED AS BL AND BU
JBL = 7*N + NH + 1
JBU = JBL + N

C SPECIFY THAT THE PROBLEM IS UNCONSTRAINED
IBOUND = 4
CALL E04LBF(N,FUNCT,HESS,MONIT,IPRINT,MAXCAL,ETA,XTOL,STEPMX,

* IBOUND,WORK(JBL),WORK(JBU),X,HESL,LH,HESD,IWORK(3),F,
* G,IWORK,LIWORK,WORK,LWORK,IFAIL)

C CHECK THE PART OF IWORK WHICH WAS USED AS ISTATE IN CASE
C THE MODULUS OF SOME X(J) HAS REACHED E+6

TOOBIG = .FALSE.
DO 20 J = 1, N

IF (IWORK(2+J).LT.0) TOOBIG = .TRUE.
20 CONTINUE

IF (.NOT. TOOBIG) RETURN
WRITE (NOUT,FMT=99998)
STOP

C
99999 FORMAT (’ ***** INSUFFICIENT WORKSPACE HAS BEEN SUPPLIED *****’)
99998 FORMAT (’ ***** A VARIABLE HAS REACHED E+6 IN MODULUS - NO UNCON’,

* ’STRAINED MINIMUM HAS BEEN FOUND *****’)
END

9 Example

A program to minimize

F ¼ ðx1 þ 10x2Þ2 þ 5ðx3 � x4Þ2 þ ðx2 � 2x3Þ4 þ 10ðx1 � x4Þ4

subject to the bounds

1 � x1 � 3

�2 � x2 � 0

1 � x4 � 3:

starting from the initial guess (3, �1, 0, 1). Before calling E04LBF, the program calls E04HCF and
E04HDF to check the derivatives calculated by FUNCT and HESS.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* E04LBF Example Program Text.

E04LBF NAG Fortran Library Manual

E04LBF.12 [NP3546/20A]

* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, LH, LIW, LW
PARAMETER (N=4,LH=N*(N-1)/2,LIW=2,LW=7*N+N*(N-1)/2)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real ETA, F, STEPMX, XTOL
INTEGER IBOUND, IFAIL, IPRINT, J, MAXCAL

* .. Local Arrays ..
real BL(N), BU(N), G(N), HESD(N), HESL(LH), W(LW),

+ X(N)
INTEGER ISTATE(N), IW(LIW)

* .. External Subroutines ..
EXTERNAL E04HCF, E04HDF, E04LBF, FUNCT, HESS, MONIT

* .. Executable Statements ..
WRITE (NOUT,*) ’E04LBF Example Program Results’

* Set up an arbitrary point at which to check the derivatives
X(1) = 1.46e0
X(2) = -0.82e0
X(3) = 0.57e0
X(4) = 1.21e0

* Check the 1st derivatives
IFAIL = 0

*
CALL E04HCF(N,FUNCT,X,F,G,IW,LIW,W,LW,IFAIL)

*
* Check the 2nd derivatives

IFAIL = 0
*

CALL E04HDF(N,FUNCT,HESS,X,G,HESL,LH,HESD,IW,LIW,W,LW,IFAIL)
*
* Continue setting parameters for E04LBF
* * Set IPRINT to 1 to obtain output from MONIT at each iteration *

IPRINT = -1
MAXCAL = 50*N
ETA = 0.9e0

* Set XTOL to zero so that E04LBF will use the default tolerance
XTOL = 0.0e0

* We estimate that the minimum will be within 4 units of the
* starting point

STEPMX = 4.0e0
IBOUND = 0
BL(1) = 1.0e0
BU(1) = 3.0e0
BL(2) = -2.0e0
BU(2) = 0.0e0

* X(3) is not bounded, so we set BL(3) to a large negative
* number and BU(3) to a large positive number

BL(3) = -1.0e6
BU(3) = 1.0e6
BL(4) = 1.0e0
BU(4) = 3.0e0

* Set up starting point
X(1) = 3.0e0
X(2) = -1.0e0
X(3) = 0.0e0
X(4) = 1.0e0
IFAIL = 1

*
CALL E04LBF(N,FUNCT,HESS,MONIT,IPRINT,MAXCAL,ETA,XTOL,STEPMX,

+ IBOUND,BL,BU,X,HESL,LH,HESD,ISTATE,F,G,IW,LIW,W,LW,
+ IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Error exit type’, IFAIL,

+ ’ - see routine document’
END IF
IF (IFAIL.NE.1) THEN

WRITE (NOUT,*)

E04 – Minimizing or Maximizing a Function E04LBF

[NP3546/20A] E04LBF.13

WRITE (NOUT,99998) ’Function value on exit is ’, F
WRITE (NOUT,99997) ’at the point’, (X(J),J=1,N)
WRITE (NOUT,*)

+ ’The corresponding (machine dependent) gradient is’
WRITE (NOUT,99996) (G(J),J=1,N)
WRITE (NOUT,99995) ’ISTATE contains’, (ISTATE(J),J=1,N)
WRITE (NOUT,99994) ’and HESD contains’, (HESD(J),J=1,N)

END IF
STOP

*
99999 FORMAT (1X,A,I3,A)
99998 FORMAT (1X,A,F9.4)
99997 FORMAT (1X,A,4F9.4)
99996 FORMAT (23X,1P,4e12.3)
99995 FORMAT (1X,A,4I5)
99994 FORMAT (1X,A,4e12.4)

END
*

SUBROUTINE FUNCT(IFLAG,N,XC,FC,GC,IW,LIW,W,LW)
* Routine to evaluate objective function and its 1st derivatives.
* .. Scalar Arguments ..

real FC
INTEGER IFLAG, LIW, LW, N

* .. Array Arguments ..
real GC(N), W(LW), XC(N)
INTEGER IW(LIW)

* .. Executable Statements ..
FC = (XC(1)+10.0e0*XC(2))**2 + 5.0e0*(XC(3)-XC(4))**2 + (XC(2)

+ -2.0e0*XC(3))**4 + 10.0e0*(XC(1)-XC(4))**4
GC(1) = 2.0e0*(XC(1)+10.0e0*XC(2)) + 40.0e0*(XC(1)-XC(4))**3
GC(2) = 20.0e0*(XC(1)+10.0e0*XC(2)) + 4.0e0*(XC(2)-2.0e0*XC(3))**3
GC(3) = 10.0e0*(XC(3)-XC(4)) - 8.0e0*(XC(2)-2.0e0*XC(3))**3
GC(4) = 10.0e0*(XC(4)-XC(3)) - 40.0e0*(XC(1)-XC(4))**3
RETURN
END

*
SUBROUTINE HESS(IFLAG,N,XC,FHESL,LH,FHESD,IW,LIW,W,LW)

* Routine to evaluate 2nd derivatives
* .. Scalar Arguments ..

INTEGER IFLAG, LH, LIW, LW, N
* .. Array Arguments ..

real FHESD(N), FHESL(LH), W(LW), XC(N)
INTEGER IW(LIW)

* .. Executable Statements ..
FHESD(1) = 2.0e0 + 120.0e0*(XC(1)-XC(4))**2
FHESD(2) = 200.0e0 + 12.0e0*(XC(2)-2.0e0*XC(3))**2
FHESD(3) = 10.0e0 + 48.0e0*(XC(2)-2.0e0*XC(3))**2
FHESD(4) = 10.0e0 + 120.0e0*(XC(1)-XC(4))**2
FHESL(1) = 20.0e0
FHESL(2) = 0.0e0
FHESL(3) = -24.0e0*(XC(2)-2.0e0*XC(3))**2
FHESL(4) = -120.0e0*(XC(1)-XC(4))**2
FHESL(5) = 0.0e0
FHESL(6) = -10.0e0
RETURN
END

*
SUBROUTINE MONIT(N,XC,FC,GC,ISTATE,GPJNRM,COND,POSDEF,NITER,NF,IW,

+ LIW,W,LW)
* Monitoring routine
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real COND, FC, GPJNRM
INTEGER LIW, LW, N, NF, NITER
LOGICAL POSDEF

* .. Array Arguments ..
real GC(N), W(LW), XC(N)
INTEGER ISTATE(N), IW(LIW)

* .. Local Scalars ..

E04LBF NAG Fortran Library Manual

E04LBF.14 [NP3546/20A]

INTEGER ISJ, J
* .. Executable Statements ..

WRITE (NOUT,*)
WRITE (NOUT,*)

+’ Itn Fn evals Fn value Norm of proj g
+radient’
WRITE (NOUT,99999) NITER, NF, FC, GPJNRM
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’ J X(J) G(J) Status’
DO 20 J = 1, N

ISJ = ISTATE(J)
IF (ISJ.GT.0) THEN

WRITE (NOUT,99998) J, XC(J), GC(J), ’ Free’
ELSE IF (ISJ.EQ.-1) THEN

WRITE (NOUT,99998) J, XC(J), GC(J), ’ Upper Bound’
ELSE IF (ISJ.EQ.-2) THEN

WRITE (NOUT,99998) J, XC(J), GC(J), ’ Lower Bound’
ELSE IF (ISJ.EQ.-3) THEN

WRITE (NOUT,99998) J, XC(J), GC(J), ’ Constant’
END IF

20 CONTINUE
IF (COND.NE.0.0e0) THEN

IF (COND.GT.1.0e6) THEN
WRITE (NOUT,*)
WRITE (NOUT,*)

+’Estimated condition number of projected Hessian is more than 1.0E
++6’

ELSE
WRITE (NOUT,*)
WRITE (NOUT,99997)

+ ’Estimated condition number of projected Hessian = ’, COND
END IF
IF (.NOT. POSDEF) THEN

* The following statement is included so that this MONIT
* can also be used in conjunction with E04KDF

WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’Projected Hessian matrix is not positive definite’
END IF
RETURN

END IF
*
99999 FORMAT (1X,I3,6X,I5,2(6X,1P,e20.4))
99998 FORMAT (1X,I2,1X,1P,2e20.4,A)
99997 FORMAT (1X,A,1P,e10.2)

END

9.2 Program Data

None.

9.3 Program Results

E04LBF Example Program Results

Error exit type 3 - see routine document

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is

2.953E-01 -5.867E-10 1.173E-09 5.907E+00
ISTATE contains -2 1 2 -2
and HESD contains 0.2098E+03 0.4738E+02 0.4552E+02 0.1750E+02

E04 – Minimizing or Maximizing a Function E04LBF

[NP3546/20A] E04LBF.15 (last)

	E04LBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	FUNCT
	IFLAG
	N
	XC
	FC
	GC
	IW
	LIW
	W
	LW

	HESS
	IFLAG
	N
	XC
	FHESL
	LH
	FHESD
	IW
	LIW
	W
	LW

	MONIT
	N
	XC
	FC
	GC
	ISTATE
	GPJNRM
	COND
	POSDEF
	NITER
	NF
	IW
	LIW
	W
	LW

	IPRINT
	MAXCAL
	ETA
	XTOL
	STEPMX
	IBOUND
	BL
	BU
	X
	HESL
	LH
	HESD
	ISTATE
	F
	G
	IW
	LIW
	W
	LW
	IFAIL

	6 Error Indicators and Warnings
	IFAIL < 0
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5

	7 Accuracy
	8 Further Comments
	8.1 Timing
	8.2 Scaling
	8.3 Unconstrained Minimization

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

