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1 Scope of the Chapter

An optimization problem involves minimizing a function (called the objective function) of several
variables, possibly subject to restrictions on the values of the variables defined by a set of constraint
functions. The routines in the Library are concerned with function minimization only, since the problem
of maximizing a given objective function F(x) is equivalent to minimizing �F xð Þ.
This introduction is only a brief guide to the subject of optimization designed for the casual user. Anyone
with a difficult or protracted problem to solve will find it beneficial to consult a more detailed text, such as
Gill et al. (1981) or Fletcher (1987).

Users who are unfamiliar with the mathematics of the subject may find some sections difficult at first
reading; if so, they should concentrate on Sections 2.1, 2.2, 2.5, 2.6 and 3.

2 Background to the Problems

2.1 Types of Optimization Problems

The solution of optimization problems by a single, all-purpose, method is cumbersome and inefficient.
Optimization problems are therefore classified into particular categories, where each category is defined by
the properties of the objective and constraint functions, as illustrated by some examples below.

Properties of Objective Function Properties of Constraints
Nonlinear Nonlinear
Sums of squares of nonlinear functions Sparse linear
Quadratic Linear
Sums of squares of linear functions Bounds
Linear None

For instance, a specific problem category involves the minimization of a nonlinear objective function
subject to bounds on the variables. In the following sections we define the particular categories of
problems that can be solved by routines contained in this chapter. Not every category is given special
treatment in the current version of the Library; however, the long-term objective is to provide a
comprehensive set of routines to solve problems in all such categories.

2.1.1 Unconstrained minimization

In unconstrained minimization problems there are no constraints on the variables. The problem can be
stated mathematically as follows:

minimize
x

F xð Þ

where x 2 Rn, that is, x ¼ x1; x2; . . . ; xnð ÞT .

2.1.2 Nonlinear least-squares problems

Special consideration is given to the problem for which the function to be minimized can be expressed as a
sum of squared functions. The least-squares problem can be stated mathematically as follows:

minimize
x

fTf ¼
Xm
i¼1

f2i xð Þ
( )

, x 2 Rn

where the ith element of the m-vector f is the function fi xð Þ.
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2.1.3 Minimization subject to bounds on the variables

These problems differ from the unconstrained problem in that at least one of the variables is subject to a
simple bound (or restriction) on its value, e.g., x5 � 10, but no constraints of a more general form are
present.

The problem can be stated mathematically as follows:

minimize
x

F xð Þ, x 2 Rn

subject to li � xi � ui; i ¼ 1; 2; . . . ; n.

This format assumes that upper and lower bounds exist on all the variables. By conceptually allowing
ui ¼ þ1 and li ¼ �1 all the variables need not be restricted.

2.1.4 Minimization subject to linear constraints

A general linear constraint is defined as a constraint function that is linear in more than one of the
variables, e.g., 3x1 þ 2x2 � 4. The various types of linear constraint are reflected in the following
mathematical statement of the problem:

minimize
x

F xð Þ, x 2 Rn

subject to the

equality constraints: aTi x ¼ bi i ¼ 1; 2; . . . ;m1;

inequality constraints: aTi x � bi i ¼ m1 þ 1;m1 þ 2; . . . ;m2;

aTi x � bi i ¼ m2 þ 1;m2 þ 2; . . . ;m3;

range constraints: sj � aTi x � tj i ¼ m3 þ 1;m3 þ 2; . . . ;m4;

j ¼ 1; 2; . . . ;m4 �m3;
bounds constraints: li � xi � ui i ¼ 1; 2; . . . ; n

where each ai is a vector of length n; bi, sj and tj are constant scalars; and any of the categories may be

empty.

Although the bounds on xi could be included in the definition of general linear constraints, we prefer to
distinguish between them for reasons of computational efficiency.

If F xð Þ is a linear function, the linearly-constrained problem is termed a linear programming problem
(LP problem); if F xð Þ is a quadratic function, the problem is termed a quadratic programming problem
(QP problem). For further discussion of LP and QP problems, including the dual formulation of such
problems, see Dantzig (1963).

2.1.5 Minimization subject to nonlinear constraints

A problem is included in this category if at least one constraint function is nonlinear, e.g.,

x2
1 þ x3 þ x4 � 2 � 0. The mathematical statement of the problem is identical to that for the linearly-

constrained case, except for the addition of the following constraints:

equality constraints: ci xð Þ ¼ 0 i ¼ 1; 2; . . . ;m5;
inequality constraints: ci xð Þ � 0 i ¼ m5 þ 1;m5 þ 2; . . . ;m6;
range constraints: vj � ci xð Þ � wj i ¼ m6 þ 1;m6 þ 2; . . . ;m7,

j ¼ 1; 2; . . . ;m7 �m6

where each ci is a nonlinear function; vj and wj are constant scalars; and any category may be empty.

Note that we do not include a separate category for constraints of the form ci xð Þ � 0, since this is
equivalent to �ci xð Þ � 0.

Although the general linear constraints could be included in the definition of nonlinear constraints, again
we prefer to distinguish between them for reasons of computational efficiency.

If F xð Þ is a nonlinear function, the nonlinearly-constrained problem is termed a nonlinear programming
problem (NLP problem). For further discussion of NLP problems, see Gill et al. (1981) or Fletcher
(1987).
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2.1.6 Minimization subject to bounds on the objective function

In all of the above problem categories it is assumed that

a � F xð Þ � b

where a ¼ �1 and b ¼ þ1. Problems in which a and/or b are finite can be solved by adding an extra
constraint of the appropriate type (i.e., linear or nonlinear) depending on the form of F xð Þ. Further advice
is given in Section 3.5.

2.2 Geometric Representation and Terminology

To illustrate the nature of optimization problems it is useful to consider the following example in two
dimensions:

F xð Þ ¼ ex1 4x21 þ 2x2
2 þ 4x1x2 þ 2x2 þ 1

� �
.

(This function is used as the example function in the documentation for the unconstrained routines.)
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Figure 1 is a contour diagram of F xð Þ. The contours labelled F0; F1; . . . ; F4 are isovalue contours, or lines

along which the function F xð Þ takes specific constant values. The point x� ¼ 1
2
;�1

� �T
is a local

unconstrained minimum, that is, the value of F x�ð Þ (¼ 0) is less than at all the neighbouring points. A
function may have several such minima. The lowest of the local minima is termed a global minimum. In

the problem illustrated in Figure 1, x� is the only local minimum. The point �x is said to be a saddle point
because it is a minimum along the line AB, but a maximum along CD.

If we add the constraint x1 � 0 (a simple bound) to the problem of minimizing F xð Þ, the solution remains
unaltered. In Figure 1 this constraint is represented by the straight line passing through x1 ¼ 0, and the

shading on the line indicates the unacceptable region (i.e., x1 < 0). The region in Rn satisfying the
constraints of an optimization problem is termed the feasible region. A point satisfying the constraints is
defined as a feasible point.

If we add the nonlinear constraint c1 xð Þ : x1 þ x2 � x1x2 � 3
2
� 0, represented by the curved shaded line in

Figure 1, then x� is not a feasible point because c1 x�ð Þ < 0. The solution of the new constrained problem

is x̂ ’ 1:1825;�1:7397ð ÞT , the feasible point with the smallest function value (where F x̂ð Þ ’ 3:0607).
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2.2.1 Gradient vector

The vector of first partial derivatives of F xð Þ is called the gradient vector, and is denoted by g xð Þ, i.e.,

g xð Þ ¼ @F xð Þ
@x1

;
@F xð Þ
@x2

; . . . ;
@F xð Þ
@xn

� �T
.

For the function illustrated in Figure 1,

g xð Þ ¼ F xð Þ þ ex1 8x1 þ 4x2ð Þ
ex1 4x2 þ 4x1 þ 2ð Þ

� �
.

The gradient vector is of importance in optimization because it must be zero at an unconstrained minimum
of any function with continuous first derivatives.

2.2.2 Hessian matrix

The matrix of second partial derivatives of a function is termed its Hessian matrix. The Hessian matrix of

F xð Þ is denoted by G xð Þ, and its i; jð Þth element is given by @2F xð Þ=@xi@xj. If F xð Þ has continuous

second derivatives, then G xð Þ must be positive semi-definite at any unconstrained minimum of F .

2.2.3 Jacobian matrix; matrix of constraint normals

In nonlinear least-squares problems, the matrix of first partial derivatives of the vector-valued function
f xð Þ is termed the Jacobian matrix of f xð Þ and its i; jð Þth component is @fi=@xj.

The vector of first partial derivatives of the constraint ci xð Þ is denoted by

ai xð Þ ¼ @ci xð Þ
@x1

;
@ci xð Þ
@x2

; . . . ;
@ci xð Þ
@xn

� �T
.

The matrix whose columns are the vectors aif g is termed the matrix of constraint normals. At a point x̂,
the vector ai x̂ð Þ is orthogonal (normal) to the isovalue contour of ci xð Þ passing through x̂; this relationship
is illustrated for a two-dimensional function in Figure 2.

Figure 2

Note that if ci xð Þ is a linear constraint involving aTi x, then its vector of first partial derivatives is simply
the vector ai.

2.3 Sufficient Conditions for a Solution

All nonlinear functions will be assumed to have continuous second derivatives in the neighbourhood of the
solution.

2.3.1 Unconstrained minimization

The following conditions are sufficient for the point x� to be an unconstrained local minimum of F xð Þ:
(i) g x�ð Þk k ¼ 0; and

(ii) G x�ð Þ is positive-definite,

where gk k denotes the Euclidean length of g.
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2.3.2 Minimization subject to bounds on the variables

At the solution of a bounds-constrained problem, variables which are not on their bounds are termed free
variables. If it is known in advance which variables are on their bounds at the solution, the problem can
be solved as an unconstrained problem in just the free variables; thus, the sufficient conditions for a
solution are similar to those for the unconstrained case, applied only to the free variables.

Sufficient conditions for a feasible point x� to be the solution of a bounds-constrained problem are as
follows:

(i) �g x�ð Þk k ¼ 0; and

(ii) �G x�ð Þ is positive-definite; and

(iii) gj x�ð Þ < 0; xj ¼ uj; gj x�ð Þ > 0; xj ¼ lj,

where �g xð Þ is the gradient of F xð Þ with respect to the free variables, and �G xð Þ is the Hessian matrix of
F xð Þ with respect to the free variables. The extra condition (iii) ensures that F xð Þ cannot be reduced by
moving off one or more of the bounds.

2.3.3 Linearly-constrained minimization

For the sake of simplicity, the following description does not include a specific treatment of bounds or
range constraints, since the results for general linear inequality constraints can be applied directly to these
cases.

At a solution x�, of a linearly-constrained problem, the constraints which hold as equalities are called the

active or binding constraints. Assume that there are t active constraints at the solution x�, and let Â

denote the matrix whose columns are the columns of A corresponding to the active constraints, with b̂ the
vector similarly obtained from b; then

ÂTx� ¼ b̂.

The matrix Z is defined as an n� n� tð Þ matrix satisfying:

ÂTZ ¼ 0;

ZTZ ¼ I.

The columns of Z form an orthogonal basis for the set of vectors orthogonal to the columns of Â.

Define

gZ xð Þ ¼ ZTg xð Þ, the projected gradient vector of F xð Þ;

GZ xð Þ ¼ ZTG xð ÞZ, the projected Hessian matrix of F xð Þ.
At the solution of a linearly-constrained problem, the projected gradient vector must be zero, which implies

that the gradient vector g x�ð Þ can be written as a linear combination of the columns of Â, i.e.,

g x�ð Þ ¼
Xt
i¼1

��
i âi ¼ Â��. The scalar ��

i is defined as the Lagrange-multiplier corresponding to the ith

active constraint. A simple interpretation of the ith Lagrange-multiplier is that it gives the gradient of
F xð Þ along the ith active constraint normal; a convenient definition of the Lagrange-multiplier vector
(although not a recommended method for computation) is:

�� ¼ ÂT Â
� ��1

ÂT g x�ð Þ.
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Sufficient conditions for x� to be the solution of a linearly-constrained problem are:

(i) x� is feasible, and ÂTx� ¼ b̂; and

(ii) gZ x�ð Þk k ¼ 0, or equivalently, g x�ð Þ ¼ Â��; and

(iii) GZ x�ð Þ is positive-definite; and

(iv) ��
i > 0 if ��

i corresponds to a constraint âTi x
� � b̂i;

��
i < 0 if ��

i corresponds to a constraint âTi x
� � b̂i.

The sign of ��
i is immaterial for equality constraints, which by definition are always active.

2.3.4 Nonlinearly-constrained minimization

For nonlinearly-constrained problems, much of the terminology is defined exactly as in the linearly-
constrained case. The set of active constraints at x again means the set of constraints that hold as

equalities at x, with corresponding definitions of ĉ and Â: the vector ĉ xð Þ contains the active constraint

functions, and the columns of Â xð Þ are the gradient vectors of the active constraints. As before, Z is

defined in terms of Â xð Þ as a matrix such that:

ÂTZ ¼ 0;

ZTZ ¼ I

where the dependence on x has been suppressed for compactness.

The projected gradient vector gZ xð Þ is the vector ZTg xð Þ. At the solution x� of a nonlinearly-constrained
problem, the projected gradient must be zero, which implies the existence of Lagrange-multipliers

corresponding to the active constraints, i.e., g x�ð Þ ¼ Â x�ð Þ��.

The Lagrangian function is given by:

L x; �ð Þ ¼ F xð Þ � �T ĉ xð Þ.

We define gL xð Þ as the gradient of the Lagrangian function; GL xð Þ as its Hessian matrix, and ĜL xð Þ as its
projected Hessian matrix, i.e., ĜL ¼ ZTGLZ.

Sufficient conditions for x� to be the solution of a nonlinearly-constrained problem are:

(i) x� is feasible, and ĉ x�ð Þ ¼ 0; and

(ii) gZ x�ð Þk k ¼ 0, or, equivalently, g x�ð Þ ¼ Â x�ð Þ��; and

(iii) ĜL x�ð Þ is positive-definite; and

(iv) ��
i > 0 if ��

i corresponds to a constraint of the form ĉi � 0.

The sign of ��
i is immaterial for equality constraints, which by definition are always active.

Note that condition (ii) implies that the projected gradient of the Lagrangian function must also be zero at

x�, since the application of ZT annihilates the matrix Â x�ð Þ.

2.4 Background to Optimization Methods

All the algorithms contained in this chapter generate an iterative sequence x kð Þ
n o

that converges to the

solution x� in the limit, except for some special problem categories (i.e., linear and quadratic
programming). To terminate computation of the sequence, a convergence test is performed to determine
whether the current estimate of the solution is an adequate approximation. The convergence tests are
discussed in Section 2.6.
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Most of the methods construct a sequence x kð Þ
n o

satisfying:

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ,

where the vector p kð Þ is termed the direction of search, and � kð Þ is the steplength. The steplength � kð Þ is

chosen so that F x kþ1ð Þ
� �

< F x kð Þ
� �

and is computed using one of the techniques for one-dimensional

optimization referred to in Section 2.4.1.

2.4.1 One-dimensional optimization

The Library contains two special routines for minimizing a function of a single variable. Both routines are
based on safeguarded polynomial approximation. One routine requires function evaluations only and fits a
quadratic polynomial whilst the other requires function and gradient evaluations and fits a cubic
polynomial. See Section 4.1 of Gill et al. (1981).

2.4.2 Methods for unconstrained optimization

The distinctions among methods arise primarily from the need to use varying levels of information about
derivatives of F xð Þ in defining the search direction. We describe three basic approaches to unconstrained
problems, which may be extended to other problem categories. Since a full description of the methods
would fill several volumes, the discussion here can do little more than allude to the processes involved, and
direct the user to other sources for a full explanation.

(a) Newton-type Methods (Modified Newton Methods)

Newton-type methods use the Hessian matrix G x kð Þ
� �

, or a finite-difference approximation to

G x kð Þ
� �

, to define the search direction. The routines in the Library either require a subroutine that

computes the elements of G x kð Þ
� �

directly, or they approximate G x kð Þ
� �

by finite-differences.

Newton-type methods are the most powerful methods available for general problems and will find the
minimum of a quadratic function in one iteration. See Sections 4.4 and 4.5.1 of Gill et al. (1981).

(b) Quasi-Newton Methods

Quasi-Newton methods approximate the Hessian G x kð Þ
� �

by a matrix B kð Þ which is modified at each

iteration to include information obtained about the curvature of F along the current search direction

p kð Þ. Although not as robust as Newton-type methods, quasi-Newton methods can be more efficient

because G x kð Þ
� �

is not computed directly, or approximated by finite-differences. Quasi-Newton

methods minimize a quadratic function in n iterations. See Section 4.5.2 of Gill et al. (1981).

(c) Conjugate-Gradient Methods

Unlike Newton-type and quasi-Newton methods, conjugate-gradient methods do not require the
storage of an n by n matrix and so are ideally suited to solve large problems. Conjugate-gradient type
methods are not usually as reliable or efficient as Newton-type, or quasi-Newton methods. See
Section 4.8.3 of Gill et al. (1981).

2.4.3 Methods for nonlinear least-squares problems

These methods are similar to those for unconstrained optimization, but exploit the special structure of the
Hessian matrix to give improved computational efficiency.

Since

F xð Þ ¼
Xm
i¼1

f2
i xð Þ

the Hessian matrix G xð Þ is of the form
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G xð Þ ¼ 2 J xð ÞTJ xð Þ þ
Xm
i¼1

fi xð ÞGi xð Þ
 !

,

where J xð Þ is the Jacobian matrix of f xð Þ, and Gi xð Þ is the Hessian matrix of fi xð Þ.

In the neighbourhood of the solution, f xð Þk k is often small compared to J xð ÞTJ xð Þ
��� ��� (for example, when

f xð Þ represents the goodness-of-fit of a nonlinear model to observed data). In such cases, 2J xð ÞTJ xð Þ
may be an adequate approximation to G xð Þ, thereby avoiding the need to compute or approximate second
derivatives of fi xð Þf g. See Section 4.7 of Gill et al. (1981).

2.4.4 Methods for handling constraints

Bounds on the variables are dealt with by fixing some of the variables on their bounds and adjusting the
remaining free variables to minimize the function. By examining estimates of the Lagrange-multipliers it
is possible to adjust the set of variables fixed on their bounds so that eventually the bounds active at the
solution should be correctly identified. This type of method is called an active set method. One feature

of such methods is that, given an initial feasible point, all approximations x kð Þ are feasible. This approach
can be extended to general linear constraints. At a point, x, the set of constraints which hold as equalities
being used to predict, or approximate, the set of active constraints is called the working set.

Nonlinear constraints are more difficult to handle. If at all possible, it is usually beneficial to avoid
including nonlinear constraints during the formulation of the problem. The methods currently implemented
in the Library handle nonlinearly constrained problems by transforming them into a sequence of quadratic

programming problems. A feature of such methods is that x kð Þ is not guaranteed to be feasible except in
the limit, and this is certainly true of the routines currently in the Library. See Chapter 6, particularly
Sections 6.4 and 6.5, of Gill et al. (1981).

Anyone interested in a detailed description of methods for optimization should consult the references.

2.5 Scaling

Scaling (in a broadly defined sense) often has a significant influence on the performance of optimization
methods. Since convergence tolerances and other criteria are necessarily based on an implicit definition of
‘small’ and ‘large’, problems with unusual or unbalanced scaling may cause difficulties for some
algorithms. Although there are currently no user-callable scaling routines in the Library, scaling is
automatically performed by default in the routines which solve sparse LP, QP or NLP problems and in
some newer dense solver routines. The following sections present some general comments on problem
scaling.

2.5.1 Transformation of variables

One method of scaling is to transform the variables from their original representation, which may reflect
the physical nature of the problem, to variables that have certain desirable properties in terms of
optimization. It is generally helpful for the following conditions to be satisfied:

(i) the variables are all of similar magnitude in the region of interest;

(ii) a fixed change in any of the variables results in similar changes in F xð Þ. Ideally, a unit change in any
variable produces a unit change in F xð Þ;

(iii) the variables are transformed so as to avoid cancellation error in the evaluation of F xð Þ.
Normally, users should restrict themselves to linear transformations of variables, although occasionally
nonlinear transformations are possible. The most common such transformation (and often the most
appropriate) is of the form

xnew ¼ Dxold,

where D is a diagonal matrix with constant coefficients. Our experience suggests that more use should be
made of the transformation
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xnew ¼ Dxold þ v,

where v is a constant vector.

Consider, for example, a problem in which the variable x3 represents the position of the peak of a
Gaussian curve to be fitted to data for which the extreme values are 150 and 170; therefore x3 is known to
lie in the range 150–170. One possible scaling would be to define a new variable �x3, given by

�x3 ¼
x3

170
.

A better transformation, however, is given by defining �x3 as

�x3 ¼
x3 � 160

10
.

Frequently, an improvement in the accuracy of evaluation of F xð Þ can result if the variables are scaled
before the routines to evaluate F xð Þ are coded. For instance, in the above problem just mentioned of
Gaussian curve fitting, x3 may always occur in terms of the form x3 � xmð Þ, where xm is a constant
representing the mean peak position.

2.5.2 Scaling the objective function

The objective function has already been mentioned in the discussion of scaling the variables. The solution
of a given problem is unaltered if F xð Þ is multiplied by a positive constant, or if a constant value is added
to F xð Þ. It is generally preferable for the objective function to be of the order of unity in the region of

interest; thus, if in the original formulation F xð Þ is always of the order of 10þ5 (say), then the value of

F xð Þ should be multiplied by 10�5 when evaluating the function within an optimization routine. If a
constant is added or subtracted in the computation of F xð Þ, usually it should be omitted, i.e., it is better to

formulate F xð Þ as x2
1 þ x2

2 rather than as x21 þ x22 þ 1000 or even x2
1 þ x2

2 þ 1. The inclusion of such a
constant in the calculation of F xð Þ can result in a loss of significant figures.

2.5.3 Scaling the constraints

A ‘well scaled’ set of constraints has two main properties. Firstly, each constraint should be well-
conditioned with respect to perturbations of the variables. Secondly, the constraints should be balanced
with respect to each other, i.e., all the constraints should have ‘equal weight’ in the solution process.

The solution of a linearly- or nonlinearly-constrained problem is unaltered if the ith constraint is multiplied
by a positive weight wi. At the approximation of the solution determined by a Library routine, any active
linear constraints will (in general) be satisfied ‘exactly’ (i.e., to within the tolerance defined by machine

precision) if they have been properly scaled. This is in contrast to any active nonlinear constraints, which

will not (in general) be satisfied ‘exactly’ but will have ‘small’ values (for example, ĉ1 x�ð Þ ¼ 10�8,

ĉ2 x�ð Þ ¼ �10�6, and so on). In general, this discrepancy will be minimized if the constraints are weighted
so that a unit change in x produces a similar change in each constraint.

A second reason for introducing weights is related to the effect of the size of the constraints on the
Lagrange-multiplier estimates and, consequently, on the active set strategy. This means that different sets
of weights may cause an algorithm to produce different sequences of iterates. Additional discussion is
given in Gill et al. (1981).

2.6 Analysis of Computed Results

2.6.1 Convergence criteria

The convergence criteria inevitably vary from routine to routine, since in some cases more information is
available to be checked (for example, is the Hessian matrix positive-definite?), and different checks need to
be made for different problem categories (for example, in constrained minimization it is necessary to verify
whether a trial solution is feasible). Nonetheless, the underlying principles of the various criteria are the
same; in non-mathematical terms, they are:
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(i) is the sequence x kð Þ
n o

converging?

(ii) is the sequence F kð Þ
n o

converging?

(iii) are the necessary and sufficient conditions for the solution satisfied?

The decision as to whether a sequence is converging is necessarily speculative. The criterion used in the
present routines is to assume convergence if the relative change occurring between two successive
iterations is less than some prescribed quantity. Criterion (iii) is the most reliable but often the conditions
cannot be checked fully because not all the required information may be available.

2.6.2 Checking results

Little a priori guidance can be given as to the quality of the solution found by a nonlinear optimization
algorithm, since no guarantees can be given that the methods will not fail. Therefore, the user should
always check the computed solution even if the routine reports success. Frequently a ‘solution’ may have
been found even when the routine does not report a success. The reason for this apparent contradiction is
that the routine needs to assess the accuracy of the solution. This assessment is not an exact process and
consequently may be unduly pessimistic. Any ‘solution’ is in general only an approximation to the exact
solution, and it is possible that the accuracy specified by the user is too stringent.

Further confirmation can be sought by trying to check whether or not convergence tests are almost
satisfied, or whether or not some of the sufficient conditions are nearly satisfied. When it is thought that a
routine has returned a non-zero value of IFAIL only because the requirements for ‘success’ were too
stringent it may be worth restarting with increased convergence tolerances.

For nonlinearly-constrained problems, check whether the solution returned is feasible, or nearly feasible; if
not, the solution returned is not an adequate solution.

Confidence in a solution may be increased by re-solving the problem with a different initial approximation
to the solution. See Section 8.3 of Gill et al. (1981) for further information.

2.6.3 Monitoring progress

Many of the routines in the chapter have facilities to allow the user to monitor the progress of the
minimization process, and users are encouraged to make use of these facilities. Monitoring information
can be a great aid in assessing whether or not a satisfactory solution has been obtained, and in indicating
difficulties in the minimization problem or in the ability of the routine to cope with the problem.

The behaviour of the function, the estimated solution and first derivatives can help in deciding whether a
solution is acceptable and what to do in the event of a return with a non-zero value of IFAIL.

2.6.4 Confidence intervals for least-squares solutions

When estimates of the parameters in a nonlinear least-squares problem have been found, it may be
necessary to estimate the variances of the parameters and the fitted function. These can be calculated from
the Hessian of F xð Þ at the solution.

In many least-squares problems, the Hessian is adequately approximated at the solution by G ¼ 2JTJ (see
Section 2.4.3). The Jacobian, J , or a factorization of J is returned by all the comprehensive least-squares
routines and, in addition, a routine is available in the Library to estimate variances of the parameters

following the use of most of the nonlinear least-squares routines, in the case that G ¼ 2JTJ is an adequate
approximation.

Let H be the inverse of G, and S be the sum of squares, both calculated at the solution �x; an unbiased
estimate of the variance of the ith parameter xi is

var �xi ¼
2S

m� n
Hii

and an unbiased estimate of the covariance of �xi and �xj is

covar �xi; �xj

� �
¼ 2S

m� n
Hij.
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If x� is the true solution, then the 100 1� �ð Þ% confidence interval on �x is

�xi �
ffiffiffiffiffiffiffiffiffiffiffiffi
var �xi

p
:t 1��=2;m�nð Þ < x�i < �xi þ

ffiffiffiffiffiffiffiffiffiffiffiffi
var �xi

p
:t 1��=2;m�nð Þ, i ¼ 1; 2; . . . ; n

where t 1��=2;m�nð Þ is the 100 1� �ð Þ=2 percentage point of the t-distribution with m� n degrees of

freedom.

In the majority of problems, the residuals fi, for i ¼ 1; 2; . . . ;m, contain the difference between the values
of a model function � z; xð Þ calculated for m different values of the independent variable z, and the
corresponding observed values at these points. The minimization process determines the parameters, or
constants x, of the fitted function � z; xð Þ. For any value, �z, of the independent variable z, an unbiased
estimate of the variance of � is

var � ¼ 2S

m� n

Xn
i¼1

Xn
j¼1

@�

@xi

� �
�z

@�

@xj

� �
�z

Hij.

The 100 1� �ð Þ% confidence interval on F at the point �z is

� �z; �xð Þ �
ffiffiffiffiffiffiffiffiffiffi
var �

p
:t �=2;m�nð Þ < � �z; x�ð Þ < � �z; �xð Þ þ

ffiffiffiffiffiffiffiffiffiffi
var �

p
:t �=2;m�nð Þ.

For further details on the analysis of least-squares solutions see Bard (1974) and Wolberg (1967).

3 Recommendations on Choice and Use of Available Routines

Note: please refer to the Users’ Note for your implementation to check that a routine is available.

The choice of routine depends on several factors: the type of problem (unconstrained, etc.); the level of
derivative information available (function values only, etc.); the experience of the user (there are easy-to-
use versions of some routines); whether or not storage is a problem; whether or not the routine is to be
used in a multithreaded environment; and whether computational time has a high priority. Not all choices
are catered for in the current version of the Library.

3.1 Easy-to-use and Comprehensive Routines

Many routines appear in the Library in two forms: a comprehensive form and an easy-to-use form. The
objective in the easy-to-use forms is to make the routine simple to use by including in the calling sequence
only those parameters absolutely essential to the definition of the problem, as opposed to parameters
relevant to the solution method. The comprehensive routines have additional parameters which allow the
experienced user to improve their efficiency by ‘tuning’ the method to a particular problem. For the casual
or inexperienced user, this feature is of little value and may in some cases cause a failure because of a poor
choice of some parameters.

In the easy-to-use routines, these extra parameters are determined either by fixing them at a known safe
and reasonably efficient value, or by an auxiliary routine which generates a ‘good’ value automatically.

For routines introduced since Mark 12 of the Library a different approach has been adopted towards the
choice of easy-to-use and comprehensive routines. The optimization routine has an easy-to-use parameter
list, but additional parameters may be changed from their default values by calling an ‘option’ setting
routine prior to the call to the main optimization routine. This approach has the advantages of allowing the
options to be given in the form of keywords and requiring only those options that are to be different from
their default values to be set.

3.2 Thread Safe Routines

Many of the routines in this chapter come in pairs, with each routine in the pair having exactly the same
functionality, except that one of them has additional parameters in order to make it safe for use in
multithreaded applications. The routine that is safe for use in multithreaded applicatons has an ‘A’ as the
last character in the name, in place of the usual ‘F’.

An example of such a pair is E04CCF and E04CCA.

When there is no ‘A’ version of a routine, see the document ‘Thread Safety’ for a list of routines to check
whether the ‘F’ version might be safe for multithreaded applications. Even if a routine document appears
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safe you will of course require a thread safe implementation. Routines introduced since Mark 20 are
thread safe, again subject to having a suitable implementation.

3.3 Reverse Communication Routines

Most of the routines in this chapter are called just once in order to compute the minimum of a given
objective function subject to a set of constraints on the variables. The objective function and nonlinear
constraints (if any) are specified by the user and written as subroutines to a very rigid format described in
the relevant routine document. Such subroutines usually appear in the argument list of the minimization
routine.

For the majority of applications this is the simplest and most convenient usage. Sometimes however this
approach can be restrictive:

(i) when the required format of the user’s subroutine does not allow useful information to be passed
conveniently to and from the user’s calling program;

(ii) when the minimization routine is being called from another computer language, such as Visual Basic,
which does not fully support procedure arguments in a way that is compatible with the Library.

A way around these problems is to supply reverse communication routines. Instead of performing
complete optimizations, these routines perform one step in the solution process before returning to the
calling program with an appropriate flag (IREVCM) set. The value of IREVCM determines whether the
minimization process has finished or whether fresh information is required. In the latter case the user
calculates this information (in the form of a vector or as a scalar, as appropriate) and re-enters the reverse
communication routine with the information contained in appropriate arguments. Thus the user has the
responsibility for providing the iterative loop in the minimization process, but as compensation, has an
extremely flexible and basic user-interface to the reverse communication routine.

The only reverse communication routines in this chapter are E04UFF=E04UFA, which solve dense NLP
problems using a squential quadratic programming method.

3.4 Service Routines

One of the most common errors in the use of optimization routines is that user-supplied subroutines do not
evaluate the relevant partial derivatives correctly. Because exact gradient information normally enhances
efficiency in all areas of optimization, the user should be encouraged to provide analytical derivatives
whenever possible. However, mistakes in the computation of derivatives can result in serious and obscure
run-time errors. Consequently, service routines are provided to perform an elementary check on the user-
supplied gradients. These routines are inexpensive to use in terms of the number of calls they require to
user-supplied routines.

The appropriate checking routines are as follows:

Minimization routine Checking routine(s)

E04KDF E04HCF
E04LBF E04HCF and E04HDF
E04GBF E04YAF
E04GDF E04YAF
E04HEF E04YAF and E04YBF

It should be noted that routines E04UFF=E04UFA, E04USF=E04USA, E04VHF and E04WDF each
incorporate a check on the gradients being supplied. This involves verifying the gradients at the first point
that satisfies the linear constraints and bounds. There is also an option to perform a more reliable (but
more expensive) check on the individual gradient elements being supplied. Note that the checks are not
infallible.

A second type of service routine computes a set of finite-differences to be used when approximating first
derivatives. Such differences are required as input parameters by some routines that use only function
evaluations.

E04YCF estimates selected elements of the variance-covariance matrix for the computed regression
parameters following the use of a nonlinear least-squares routine.
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E04XAF=E04XAA estimates the gradient and Hessian of a function at a point, given a routine to calculate
function values only, or estimates the Hessian of a function at a point, given a routine to calculate function
and gradient values.

E04ZCF=E04ZCA checks that user-supplied routines for evaluating an objective function, constraint
functions and their first derivatives produce derivative values which are consistent with the function and
constraint values calculated.

3.5 Function Evaluations at Infeasible Points

All the routines for constrained problems will ensure that any evaluations of the objective function occur at
points which approximately satisfy any simple bounds or linear constraints. Satisfaction of such
constraints is only approximate because routines which estimate derivatives by finite-differences may
require function evaluations at points which just violate such constraints even though the current iteration
just satisfies them.

There is no attempt to ensure that the current iteration satisfies any nonlinear constraints. Users who wish
to prevent their objective function being evaluated outside some known region (where it may be undefined
or not practically computable), may try to confine the iteration within this region by imposing suitable
simple bounds or linear constraints (but beware as this may create new local minima where these
constraints are active).

Note also that some routines allow the user-supplied routine to return a parameter (IFLAG or MODE) with
a negative value to force an immediate clean exit from the minimization routine when the objective
function (or nonlinear constraints where appropriate) cannot be evaluated.

3.6 Related Problems

Apart from the standard types of optimization problem, there are other related problems which can be
solved by routines in this or other chapters of the Library.

H02BBF solves dense integer LP problems, H02CBF solves dense integer QP problems, H02CEF solves
sparse integer QP problems and H03ABF solves a special type of such problem known as a
‘transportation’ problem.

Several routines in Chapter F04 solve linear least-squares problems, i.e., minimize
Xm
i¼1

ri xð Þ2 where

ri xð Þ ¼ bi �
Xn
j¼1

aijxj.

E02GAF solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes
Xm
i¼1

ri xð Þj j,

with ri as above, and E02GBF solves the same problem subject to linear inequality constraints.

E02GCF solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes maxi ri xð Þj j,
with ri as above.
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4 Decision Trees

Tree 1: Selection chart for unconstrained problems

Only one variable?
yes

Are first derivatives
available? yes

E04BBF

no

E04ABF

no

Does the function
have many
discontinuities?

yes
E04CCF

no

Is store size a
problem? yes

E04DGF

no

Is the function a sum
of squares? yes

Are you an
experienced user? yes

Are first derivatives
available? yes

Are second
derivatives available? yes

E04HEF

no

Are there more than
ten variables? yes

E04GBF

no

E04GDF

no

E04FCF

no

Are first derivatives
available? yes

Are second
derivatives available? yes

E04HYF

no

Are there more than
ten variables? yes

E04GYF

no

E04GZF

no

E04FYF

no

Are you an
experienced user? yes

Are first derivatives
available? yes

Are second
derivatives available? yes

E04LBF

no

Is computational cost
critical? yes

E04WDF, E04UFF or
E04VHF

no

E04KDF

no

E04WDF, E04UFF or
E04VHF

no

Are first derivatives
available? yes

Are second
derivatives available? yes

E04LYF

no

Is computational cost
critical? yes

E04KYF

no

E04KZF

no

E04JYF
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Tree 2: Selection chart for bound-constrained, linearly-constrained and nonlinearly-constrained
problems

Are there any
nonlinear constraints? yes

Is the objective
function a sum of
squares? (A least-
squares problem)

yes
E04USF

no

Are the constraints
sparse? yes

E04VHF

no

E04WDF or
E04UFF=E04UFA

no

Is the objective
function linear? (An
LP problem)

yes
See Tree 3

no

Is the objective
function quadratic? (A
QP or least-squares
problem)

yes
Is the problem a least-
squares problem? yes

E04NCF

no

See Tree 4

no

Is the objective
function a sum of
squares? (A least-
squares problem)

yes
E04USF

no

Are the constraints
simple bounds? yes

Are you an
experienced user? yes

Are first derivatives
available? yes

Are second
derivatives available? yes

E04LBF

no

Is computational cost
critical? yes

E04WDF, E04UFF or
E04VHF

no

E04KDF, E04WDF,
E04UFF or E04VHF

no

E04WDF, E04UFF or
E04VHF

no

Are first derivatives
available? yes

Are second
derivatives available? yes

E04LYF

no

Is computational cost
critical? yes

E04KYF, E04WDF,
E04UFF or E04VHF

no

E04KCF, E04WDF,
E04UFF or E04VHF

no

E04JYF

no

E04WDF, E04UFF
or/ E04VHF
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Tree 3: Linear programming

Is the objective function linear (an LP
problem) and is the linear constraint
matrix sparse?

yes
E04NQF or E04VHF

no

E04MFF

Tree 4: Quadratic programming

Is the linear constraint matrix sparse?
yes

E04NQF or E04VHF

no

Is the problem a convex QP problem?
yes

E04NCF

no

E04NFF

5 Index

Constrained minimum of a sum of squares, nonlinear constraints,
using function values and optionally first derivatives, sequential QP method,

forward communication (dense) ................................................................................ E04USF=E04USA
Convex QP problem or linearly-constrained linear least-squares problem (dense) ......... E04NCF=E04NCA
Linear programming (LP) problem (dense) ......................................................................... E04MFF=E04MFA
LP or QP problem (sparse) .............................................................................................................. E04NQF
Minimum, function of one variable,

using first derivative ....................................................................................................... E04BBF=E04BBA
using function values only ............................................................................................. E04ABF=E04ABA

Minimum, function of several variables, nonlinear constraints (comprehensive),
using function values and optionally first derivatives, sequential QP method,

forward communication (dense) .............................................................................................. E04WDF
forward communication (sparse) ............................................................................... E04UGF=E04UGA
forward communication (sparse) ............................................................................................. E04VHF
reverse communication (dense) ................................................................................. E04UFF=E04UFA

using second derivatives,
combined Gauss–Newton and modified Newton algorithm .................................................. E04HYF

Minimum, function of several variables, simple bounds (comprehensive),
using first and second derivatives, modified Newton algorithm ................................................. E04LBF
using first derivatives, modified Newton algorithm ..................................................................... E04KDF

Minimum, function of several variables, simple bounds (easy-to-use),
using first and second derivatives, modified Newton algorithm ................................................. E04LYF
using first derivatives,

modified Newton algorithm ..................................................................................................... E04KZF
quasi-Newton algorithm ........................................................................................................... E04KYF

using function values only, quasi-Newton algorithm .................................................................. E04JYF
Quadratic programming (QP) problem (dense) ................................................................... E04NFF=E04NFA
Service routines:

check user’s routine for calculating:
first derivatives of function ..................................................................................................... E04HCF
Hessian of a sum of squares ................................................................................................... E04YBF
Jacobian of first derivatives ..................................................................................................... E04YAF
second derivatives of function ................................................................................................ E04HDF

check user’s routines calculating first derivatives of function and constraints ........... E04ZCF=E04ZCA
convert MPSX data file defining LP or QP problem to format required by E04NQF .......... E04MZF
covariance matrix for nonlinear least-squares problem ............................................................... E04YCF
determine Jacobian sparsity structure before a call of E04VHF ................................................ E04VJF
estimate gradient and/or Hessian of a function ............................................................ E04XAF=E04XAA
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Initialization routine for:
E04NQF .................................................................................................................................... E04NPF
E04VHF .................................................................................................................................... E04VGF
E04DGA, E04MFA, E04NCA, E04NFA, E04UFA, E04UGA and E04USA ...................... E04WBF
E04WDF ................................................................................................................................... E04WCF

retrieve double precision optional parameter values used by:
E04NQF .................................................................................................................................... E04NYF
E04VHF .................................................................................................................................... E04VSF
E04WDF ................................................................................................................................... E04WLF

retrieve INTEGER optional parameter values used by:
E04NQF .................................................................................................................................... E04NXF
E04VHF .................................................................................................................................... E04VRF
E04WDF ................................................................................................................................... E04WKF

supply double precision optional parameter values to:
E04NQF .................................................................................................................................... E04NUF
E04VHF .................................................................................................................................... E04VNF
E04WDF ................................................................................................................................... E04WHF

supply INTEGER optional parameter values to:
E04NQF .................................................................................................................................... E04NTF
E04VHF .................................................................................................................................... E04VMF
E04WDF ................................................................................................................................... E04WGF

supply optional parameter values from external file for:
E04DGF=E04DGA .................................................................................................... E04DJF=E04DJA
E04MFF=E04MFA ..................................................................................................... E04MGF=E04MGA
E04NCF=E04NCA ..................................................................................................... E04NDF=E04NDA
E04NFF=E04NFA ...................................................................................................... E04NGF=E04NGA
E04NQF .................................................................................................................................... E04NRF
E04USF=E04USA ...................................................................................................... E04UQF=E04UQA
E04VHF .................................................................................................................................... E04VKF
E04WDF ................................................................................................................................... E04WEF

supply optional parameter values to:
E04DGF=E04DGA .................................................................................................... E04DKF=E04DKA
E04MFF=E04MFA ..................................................................................................... E04MHF=E04MHA
E04NCF=E04NCA ..................................................................................................... E04NEF=E04NEA
E04NFF=E04NFA ...................................................................................................... E04NHF=E04NHA
E04NQF .................................................................................................................................... E04NSF
E04USF=E04USA ...................................................................................................... E04URF=E04URA
E04VHF .................................................................................................................................... E04VLF
E04WDF ................................................................................................................................... E04WFF
E04WDF ................................................................................................................................... E04WJF

Unconstrained minimum of a sum of squares (comprehensive):
using first derivatives,

combined Gauss–Newton and modified Newton algorithm .................................................. E04GDF
combined Gauss–Newton and quasi-Newton algorithm ........................................................ E04GBF

using function values only,
combined Gauss–Newton and modified Newton algorithm .................................................. E04FCF

using second derivatives,
combined Gauss–Newton and modified Newton algorithm .................................................. E04HEF

Unconstrained minimum of a sum of squares (easy-to-use):
using first derivatives,

combined Gauss–Newton and modified Newton algorithm .................................................. E04GZF
combined Gauss–Newton and quasi-Newton algorithm ........................................................ E04GYF

using function values only,
combined Gauss–Newton and modified Newton algorithm .................................................. E04FYF

Unconstrained minimum, function of several variables (comprehensive):
using first derivatives, pre-conditioned conjugate gradient algorithm ......................... E04DGF=E04DGA
using function values only, simplex algorithm ............................................................. E04CCF=E04CCA
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6 Routines Withdrawn or Scheduled for Withdrawal

Withdrawn
Routine

Mark of
Withdrawal

Replacement Routine(s)

E04AAF 7 E04ABF=E04ABA
E04BAF 7 E04BBF=E04BBA
E04CDF 7 E04WDF
E04CEF 7 E04JYF
E04CFF 8 E04WDF
E04CGF 13 E04JYF
E04DBF 13 E04DGF=E04DGA
E04DCF 7 E04WDF or E04KDF
E04DDF 8 E04WDF or E04KDF
E04DEF 13 E04KYF
E04DFF 13 E04KZF
E04EAF 8 E04LBF
E04EBF 13 E04LYF
E04FAF 8 E04FCF or E04FYF
E04FBF 7 E04FCF or E04FYF
E04FDF 19 E04FYF
E04GAF 8 E04GBF, E04GYF, E04GDF or E04GZF
E04GCF 19 E04GYF
E04GEF 19 E04GZF
E04HAF 7 E04WDF
E04HBF 16 no longer required
E04HFF 19 E04HYF
E04JAF 19 E04JYF
E04JBF 16 E04WDF
E04KAF 19 E04KYF
E04KBF 16 E04WDF
E04KCF 19 E04KZF
E04LAF 19 E04LYF
E04MBF 18 E04MFF=E04MFA
E04NAF 18 E04NFF=E04NFA
E04NKF=E04NKA 23 E04NQF
E04NLF=E04NLA 23 E04NRF
E04NMF=E04NMA 23 E04NSF, E04NTF and E04NUF
E04UAF 13 E04WDF
E04UCF=E04UCA 23 E04WDF
E04UDF=E04UDA 23 E04WEF
E04UEF=E04UEA 23 E04WFF, E04WGF and E04WHF
E04UHF=E04UHA 23 E04VKF
E04UJF=E04UJA 23 E04VLF, E04VMF and E04VNF
E04UNF 22 E04USF=E04USA
E04UPF 19 E04USF=E04USA
E04VAF 12 E04WDF
E04VBF 12 E04WDF
E04VCF 17 E04WDF
E04VDF 17 E04WDF
E04WAF 12 E04WDF
E04ZAF 12 E04ZCF=E04ZCA
E04ZBF 12 no longer required
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