
NAG Fortran Library Routine Document

E01AEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

E01AEF constructs the Chebyshev-series representation of a polynomial interpolant to a set of data which
may contain derivative values.

2 Specification

SUBROUTINE E01AEF(M, XMIN, XMAX, X, Y, IP, N, ITMIN, ITMAX, A, WRK,
1 LWRK, IWRK, LIWRK, IFAIL)

INTEGER M, IP(M), N, ITMIN, ITMAX, LWRK, IWRK(LIWRK), LIWRK,
1 IFAIL
real XMIN, XMAX, X(M), Y(N), A(N), WRK(LWRK)

3 Description

Let m distinct values xi of an independent variable x be given, with xmin � xi � xmax, for i ¼ 1; 2; . . . ;m.
For each value xi, suppose that the value yi of the dependent variable y together with the first pi
derivatives of y with respect to x are given. Each pi must therefore be a non-negative integer, with the

total number of interpolating conditions, n, equal to mþ
Pm

i¼1 pi.

E01AEF calculates the unique polynomial qðxÞ of degree n� 1 (or less) which is such that qðkÞðxiÞ ¼ y
ðkÞ
i

for i ¼ 1; 2; . . . ;m; k ¼ 0; 1; . . . ; pi. Here qð0ÞðxiÞ means qðxiÞ. This polynomial is represented in
Chebyshev-series form in the normalised variable �xx, as follows:

qðxÞ ¼ 1
2
a0T0ð�xxÞ þ a1T1ð�xxÞ þ . . .þ an�1Tn�1ð�xxÞ;

where

�xx ¼ 2x� xmin � xmax

xmax � xmin

so that �1 � �xx � 1 for x in the interval xmin to xmax, and where Tið�xxÞ is the Chebyshev polynomial of the
first kind of degree i with argument �xx.

(The polynomial interpolant can subsequently be evaluated for any value of x in the given range by using
E02AKF. Chebyshev-series representations of the derivative(s) and integral(s) of qðxÞ may be obtained by
(repeated) use of E02AHF and E02AJF.)

The method used consists first of constructing a divided-difference table from the normalised �xx values and
the given values of y and its derivatives with respect to �xx. The Newton form of qðxÞ is then obtained from
this table, as described in Huddleston (1974) and Krogh (1970), with the modification described in
Section 8.2. The Newton form of the polynomial is then converted to Chebyshev-series form as described
in Section 8.3.

Since the errors incurred by these stages can be considerable, a form of iterative refinement is used to
improve the solution. This refinement is particularly useful when derivatives of rather high order are given
in the data. In reasonable examples, the refinement will usually terminate with a certain accuracy criterion
satisfied by the polynomial (see Section 7). In more difficult examples, the criterion may not be satisfied
and refinement will continue until the maximum number of iterations (as specified by the input parameter
ITMAX) is reached.

In extreme examples, the iterative process may diverge (even though the accuracy criterion is satisfied): if a
certain divergence criterion is satisfied, the process terminates at once. In all cases the routine returns the
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‘best’ polynomial achieved before termination. For the definition of ‘best’ and details of iterative
refinement and termination criteria, see Section 8.4.

4 References

Huddleston R E (1974) CDC 6600 routines for the interpolation of data and of data with derivatives SLL-
74-0214 Sandia Laboratories (Reprint)

Krogh F T (1970) Efficient algorithms for polynomial interpolation and numerical differentiation Math.
Comput. 24 185–190

5 Parameters

1: M – INTEGER Input

On entry: m, the number of given values of the independent variable x.

Constraint: M � 1.

2: XMIN – real Input
3: XMAX – real Input

On entry: the lower and upper end-points, respectively, of the interval ½xmin; xmax�. If they are not
determined by the user’s problem, it is recommended that they be set respectively to the smallest
and largest values among the xi.

Constraint: XMIN < XMAX.

4: X(M) – real array Input

On entry: the value of xi, for i ¼ 1; 2; . . . ;m. The XðiÞ need not be ordered.

Constraint: XMIN � XðiÞ � XMAX, and the XðiÞ must be distinct.

5: Y(N) – real array Input

On entry: the given values of the dependent variable, and derivatives, as follows:

The first p1 þ 1 elements contain y1; y
ð1Þ
1 ; . . . ; y

ðp1Þ
1 in that order.

The next p2 þ 1 elements contain y2; y
ð1Þ
2 ; . . . ; y

ðp2Þ
2 in that order.

..

.

The last pm þ 1 elements contain ym; y
ð1Þ
m ; . . . ; yðpmÞm in that order.

6: IP(M) – INTEGER array Input

On entry: pi, the order of the highest-order derivative whose value is given at xi, for
i ¼ 1; 2; . . . ;m. If the value of y only is given for some xi then the corresponding value of
IPðiÞ must be zero.

Constraint: IPðiÞ � 0, for i ¼ 1; 2; . . . ;M.

7: N – INTEGER Input

On entry: the total number of interpolating conditions, n.

Constraint: N ¼ Mþ IPð1Þ þ IPð2Þ þ . . .þ IPðMÞ.
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8: ITMIN – INTEGER Input
9: ITMAX – INTEGER Input

On entry: respectively the minimum and maximum number of iterations to be performed by the
routine (for full details see Section 8.4, second paragraph). Setting ITMIN and/or ITMAX negative
or zero invokes default value(s) of 2 and/or 10, respectively.

The default values will be satisfactory for most problems, but occasionally significant improvement
will result from using higher values.

Suggested value: ITMIN ¼ 0 and ITMAX ¼ 0.

10: A(N) – real array Output

On exit: AðiÞ contains the coefficient ai�1 in the Chebyshev-series representation of qðxÞ, for
i ¼ 1; 2; . . . ; n.

11: WRK(LWRK) – real array Workspace

Used as workspace, but see also Section 8.5. Used as workspace, but see also Section 8.5.

12: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E01AEF is
called.

Constraint: LWRK � 7� Nþ 5�IPMAXþMþ 7, where IPMAX is the largest value of IPðiÞ, for
i ¼ 1; 2; . . . ;M.

13: IWRK(LIWRK) – INTEGER array Workspace

Used as workspace, but see also Section 8.5. Used as workspace, but see also Section 8.5.

14: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E01AEF is
called.

Constraint: LIWRK � 2�Mþ 2.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:
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IFAIL ¼ 1

On entry, M < 1,
or N 6¼ Mþ IPð1Þ þ IPð2Þ þ . . .þ IPðMÞ,
or LWRK < 7� Nþ 5� IPMAXþMþ 7,
or LIWRK < 2�Mþ 2

(IPMAX is defined under LWRK).

IFAIL ¼ 2

On entry, IPðiÞ < 0 for some i.

IFAIL ¼ 3

On entry, XMIN � XMAX,
or XðiÞ < XMIN for some i,
or XðiÞ > XMAX,
or XðiÞ ¼ XðjÞ for some i 6¼ j.

IFAIL ¼ 4

Not all the performance indices are less than eight times the machine precision, although ITMAX
iterations have been performed. Parameters A, WRK and IWRK relate to the best polynomial
determined. A more accurate solution may possibly be obtained by increasing ITMAX and
recalling the routine. See also Sections 7, 8.4 and 8.5.

IFAIL ¼ 5

The computation has been terminated because the iterative process appears to be diverging.
(Parameters A, WRK and IWRK relate to the best polynomial determined.) Thus the problem
specified by the user’s data is probably too ill-conditioned for the solution to be satisfactory. This
may result from some of the XðiÞ being very close together, or from the number of interpolating
conditions, N, being large. If in such cases the conditions do not involve derivatives, the user is
likely to obtain a much more satisfactory solution to his problem either by cubic spline interpolation
(see E01BAF) or by curve fitting with a polynomial or spline in which the number of coefficients is
less than N, preferably much less if N is large (see Chapter E02). But see Sections 7, 8.4 and 8.5.

7 Accuracy

A complete error analysis is not currently available, but the method gives good results for reasonable
problems.

It is important to realise that for some sets of data, the polynomial interpolation problem is ill-conditioned.
That is, a small perturbation in the data may induce large changes in the polynomial, even in exact
arithmetic. Though by no means the worst example, interpolation by a single polynomial to a large
number of function values given at points equally spaced across the range is notoriously ill-conditioned
and the polynomial interpolating such a data set is prone to exhibit enormous oscillations between the data
points, especially near the ends of the range. These will be reflected in the Chebyshev coefficients being
large compared with the given function values. A more familiar example of ill-conditioning occurs in the
solution of certain systems of linear algebraic equations, in which a small change in the elements of the
matrix and/or in the components of the right-hand side vector induces a relatively large change in the
solution vector. The best that can be achieved in these cases is to make the residual vector small in some
sense. If this is possible, the computed solution is exact for a slightly perturbed set of data. Similar
considerations apply to the interpolation problem.

The residuals y
ðkÞ
i � qðkÞðxiÞ are available for inspection (see Section 8.5). To assess whether these are

reasonable, however, it is necessary to relate them to the largest function and derivative values taken by
qðxÞ over the interval ½xmin; xmax�. The following performance indices aim to do this. Let the kth
derivative of q with respect to the normalised variable �xx be given by the Chebyshev-series

1
2
ak0T0ð�xxÞ þ ak1T1ð�xxÞ þ . . .þ akn�1�kTn�1�kð�xxÞ:
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Let Ak denote the sum of the moduli of these coefficients (this is an upper bound on the kth derivative in
the interval and is taken as a measure of the maximum size of this derivative), and define

Sk ¼ max
i�k

Ai:

Then if the root-mean-square value of the residuals of qðkÞ, scaled so as to relate to the normalised variable
�xx, is denoted by rk, the performance indices are defined by

Pk ¼ rk=Sk; for k ¼ 0; 1; . . . ;max
i
ðpiÞ:

It is expected that, in reasonable cases, they will all be less than (say) 8 times the machine precision (this
is the accuracy criterion mentioned in Section 3), and in many cases will be of the order of machine
precision or less.

8 Further Comments

8.1 Timing

Computation time is approximately proportional to IT� n3, where IT is the number of iterations actually
used. (See Section 8.5.)

8.2 Divided-difference Strategy

In constructing each new coefficient in the Newton form of the polynomial, a new xi must be brought into
the computation. The xi chosen is that which yields the smallest new coefficient. This strategy increases
the stability of the divided-difference technique, sometimes quite markedly, by reducing errors due to
cancellation.

8.3 Conversion to Chebyshev Form

Conversion from the Newton form to Chebyshev-series form is effected by evaluating the former at the n
values of �xx at which Tn�1ðxÞ takes the value �1, and then interpolating these n function values by a call
of E02AFF, which provides the Chebyshev-series representation of the polynomial with very small
additional relative error.

8.4 Iterative Refinement

The iterative refinement process is performed as follows. First, an initial approximation, q1ðxÞ say, is
found by the technique described above. The rth step of the refinement process then consists of evaluating
the residuals of the rth approximation qrðxÞ, and constructing an interpolant, dqrðxÞ, to these residuals.
The next approximation qrþ1ðxÞ to the interpolating polynomial is then obtained as

qrþ1ðxÞ ¼ qrðxÞ þ dqrðxÞ:
This completes the description of the rth step.

The iterative process is terminated according to the following criteria. When a polynomial is found whose
performance indices (as defined in Section 7) are all less than 8 times the machine precision, the process
terminates after ITMIN further iterations (or after a total of ITMAX iterations if that occurs earlier). This
will occur in most reasonable problems. The extra iterations are to allow for the possibility of further
improvement. If no such polynomial is found, the process terminates after a total of ITMAX iterations.
Both these criteria are over-ridden, however, in two special cases. Firstly, if for some value of r the sum
of the moduli of the Chebyshev coefficients of dqrðxÞ is greater than that of qrðxÞ, it is concluded that the
process is diverging and the process is terminated at once (qrþ1ðxÞ is not computed). Secondly, if at any
stage, the performance indices are all computed as zero, again the process is terminated at once.

As the iterations proceed, a record is kept of the best polynomial. Subsequently, at the end of each
iteration, the new polynomial replaces the current best polynomial if it satisfies two conditions (otherwise
the best polynomial remains unchanged). The first condition is that at least one of its root-mean-square
residual values, rk (see Section 7) is smaller than the corresponding value for the current best polynomial.
The second condition takes two different forms according to whether or not the performance indices (see
Section 7) of the current best polynomial are all less than 8 times the machine precision. If they are, then
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the largest performance index of the new polynomial is required to be less than that of the current best
polynomial. If they are not, the number of indices which are less than 8 times machine precision must not
be smaller than for the current best polynomial. When the iterative process is terminated, it is the
polynomial then recorded as best, which is returned to the user as qðxÞ.

8.5 Workspace Information

On successful exit, and also if IFAIL ¼ 4 or 5 on exit, the following information is contained in the
workspace arrays WRK and IWRK:

WRKðkþ 1Þ, for k ¼ 0; 1; . . . ;IPMAX where IPMAX ¼ max
i

pi, contains the ratio of pk, the performance

index relating to the kth derivative of the qðxÞ finally provided, to 8 times the machine precision.

WRKðIPMAXþ 1þ jÞ, for j ¼ 1; 2; . . . ; n, contains the jth residual, i.e., the value of y
ðkÞ
i � qðkÞðxiÞ,

where i and k are the appropriate values corresponding to the jth element in the array Y (see description of
Y in Section 5).

IWRK(1) contains the number of iterations actually performed in deriving qðxÞ.
If, on exit, IFAIL ¼ 4 or 5, the qðxÞ finally provided may still be adequate for the user’s requirements. To
assess this the user should examine the residuals contained in WRKðIPMAXþ 1þ jÞ, for j ¼ 1; 2; . . . ; n,
to see whether they are acceptably small.

9 Example

To construct an interpolant qðxÞ to the following data:

m ¼ 4; xmin ¼ 2; xmax ¼ 6;
x1 ¼ 2; p1 ¼ 0; y1 ¼ 1;

x2 ¼ 4; p2 ¼ 1; y2 ¼ 2; y
ð1Þ
2 ¼ �1;

x3 ¼ 5; p3 ¼ 0; y3 ¼ 1;

x4 ¼ 6; p4 ¼ 2; y4 ¼ 2; y
ð1Þ
4 ¼ 4; y

ð2Þ
4 ¼ �2:

The coefficients in the Chebyshev-series representation of qðxÞ are printed, and also the residuals
corresponding to each of the given function and derivative values.

This program is written in a generalised form which can read any number of data-sets.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* E01AEF Example Program Text
* Mark 20 Revised. NAG Copyright 2001.
* .. Parameters ..

INTEGER MMAX, NMAX, IPMX, LWRK, LIWRK
PARAMETER (MMAX=4,NMAX=8,IPMX=2,LWRK=7*NMAX+5*IPMX+MMAX+7,

+ LIWRK=2*MMAX+2)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real XMAX, XMIN
INTEGER I, IFAIL, IP1, IPMAX, IRES, IY, J, M, N

* .. Local Arrays ..
real A(NMAX), WRK(LWRK), X(MMAX), Y(NMAX)
INTEGER IP(MMAX), IWRK(LIWRK)

* .. External Subroutines ..
EXTERNAL E01AEF

* .. Intrinsic Functions ..
INTRINSIC MAX

* .. Executable Statements ..
WRITE (NOUT,*) ’E01AEF Example Program Results’

* Skip heading in data file
READ (NIN,*)
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20 READ (NIN,*,END=120) M, XMIN, XMAX
IF (M.GT.0 .AND. M.LE.MMAX) THEN

N = 0
IPMAX = 0
DO 40 I = 1, M

READ (NIN,*) IP(I), X(I), (Y(J),J=N+1,N+IP(I)+1)
IPMAX = MAX(IPMAX,IP(I))
N = N + IP(I) + 1

40 CONTINUE
IF (N.LE.NMAX .AND. IPMAX.LE.IPMX) THEN

IFAIL = 1
*

CALL E01AEF(M,XMIN,XMAX,X,Y,IP,N,-1,-1,A,WRK,LWRK,IWRK,
+ LIWRK,IFAIL)

*
WRITE (NOUT,*)
IF (IFAIL.EQ.0 .OR. IFAIL.GE.4) THEN

WRITE (NOUT,99999)
+ ’Total number of interpolating conditions =’, N

WRITE (NOUT,*)
WRITE (NOUT,*) ’Interpolating polynomial’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ I Chebyshev Coefficient A(I+1)’
DO 60 I = 1, N

WRITE (NOUT,99998) I - 1, A(I)
60 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*) ’ X R Rth derivative Residual’
IY = 0
IRES = IPMAX + 1
DO 100 I = 1, M

IP1 = IP(I) + 1
DO 80 J = 1, IP1

IY = IY + 1
IRES = IRES + 1
IF (J-1.NE.0) THEN

WRITE (NOUT,99997) J - 1, Y(IY), WRK(IRES)
ELSE

WRITE (NOUT,99996) X(I), ’ 0’, Y(IY),
+ WRK(IRES)

END IF
80 CONTINUE

100 CONTINUE
ELSE

WRITE (NOUT,99995) ’E01AEF exits with IFAIL =’, IFAIL
END IF

END IF
GO TO 20

END IF
120 STOP

*
99999 FORMAT (1X,A,I4)
99998 FORMAT (1X,I4,F20.3)
99997 FORMAT (5X,I4,F12.1,F17.6)
99996 FORMAT (1X,F4.1,A,F12.1,F17.6)
99995 FORMAT (1X,A,I2)

END

9.2 Program Data

E01AEF Example Program Data
4 2.0 6.0
0 2.0 1.0
1 4.0 2.0 -1.0
0 5.0 1.0
2 6.0 2.0 4.0 -2.0

9.3 Program Results

E01AEF Example Program Results
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Total number of interpolating conditions = 7

Interpolating polynomial

I Chebyshev Coefficient A(I+1)
0 9.125
1 -4.578
2 0.461
3 2.852
4 -2.812
5 2.227
6 -0.711

X R Rth derivative Residual
2.0 0 1.0 0.000000
4.0 0 2.0 0.000000

1 -1.0 -0.000000
5.0 0 1.0 -0.000000
6.0 0 2.0 -0.000000

1 4.0 0.000000
2 -2.0 0.000000
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