
NAG Fortran Library Chapter Introduction

D04 – Numerical Differentiation

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

2.1 Description of the Problem . 2

2.2 Examples of Applications for Numerical Differentiation Routines 3

3 Recommendations on Choice and Use of Available Routines 5

4 Routines Withdrawn or Scheduled for Withdrawal 5

5 References . 6

D04 – Numerical Differentiation Introduction – D04

[NP3546/20A] D04.1

1 Scope of the Chapter

This chapter is concerned with calculating approximations to derivatives of a function f , where the user
can supply a routine representing f .

2 Background to the Problems

2.1 Description of the Problem

The problem of numerical differentiation does not receive very much attention nowadays. Although the
Taylor series plays a key role in much of classical analysis, the poor reputation enjoyed by numerical
differentiation has led numerical analysts to construct techniques for most problems which avoid the
explicit use of numerical differentiation.

One may briefly and roughly define the term numerical differentiation as any process in which numerical

values of derivatives f ðsÞðx0Þ are obtained from evaluations fðxiÞ of the function fðxÞ at several abscissae
xi near x0. This problem can be stable, well-conditioned, and accurate when complex-valued abscissae are
used. This was first pointed out by Lyness and Moler (1967). An item of numerical software for this
appears in Lyness and Ande (1971). However, in many applications the use of complex-valued abscissae
is either prohibitive or prohibited. The main difficulty in using real abscissae is that amplification of
round-off error can completely obliterate meaningful results. In the days when one relied on hand
calculating machines and tabular data, the frustration caused by this effect led to the abandonment of
serious use of the process.

There are several reasons for believing that, in the present-day computing environment, numerical
differentiation might find a useful role. The first is that, by present standards, it is rather a small-scale
calculation, so its cost may well be negligible compared with any overall saving in cost that might result
from its use. Secondly, the assignment of a step length h is now generally open. One does not have to
rely on tabular data. Thirdly, although the amplification of round-off error is an integral part of the
calculation, its effect can be measured reliably and automatically by the routine at the time of the
calculation.

Thus the user does not have to gauge the round-off level (or noise level) of the function values or assess
the effect of this on the accuracy of the results. A routine does this automatically, returning with each
result an error estimate which has already taken round-off error amplification into account.

We now illustrate, by means of a very simple example, the importance of the round-off error effect. A

very simple approximation of f 0ð0Þ, based on the identity

f 0ð0Þ ¼ ðfðhÞ � fð�hÞÞ=2hþ ðh2=3!Þf 000ð�Þ; ð1Þ
is

ðfðhÞ � fð�hÞÞ=2h:
If there were no precision problem, this formula would be the only one needed in the theory of first-order

numerical differentiation. We could simply take h ¼ 10�40 (or h ¼ 10�1000) to obtain an excellent
approximation based on two function values. It is only when we consider in detail how a finite length
machine comes to calculate ðfðhÞ � fð�hÞÞ=2h that the necessity for a sophisticated theory becomes
apparent.

To simplify the subsequent description we shall assume that the quantities involved are neither so close to
zero that the machine underflow characteristics need be considered nor so large that machine overflow
occurs. The approximation mentioned above involves the function values fðhÞ and fð�hÞ. In general no

computer has available these numbers exactly. Instead it uses approximations f̂fðhÞ and f̂fð�hÞ whose
relative accuracy is less than some tolerance �f . If the function fðxÞ is a library function, for example

sinx, �f may coincide with the machine accuracy parameter �m. More generally the function fðxÞ is

calculated in a user-supplied routine and �f is larger than �m by a small factor 5 or 6 if the calculation is

short or by some larger factor in an extended calculation. This factor is not usually known by the user.

Introduction – D04 NAG Fortran Library Manual

D04.2 [NP3546/20A]

f̂fðhÞ and f̂fð�hÞ are related to fðhÞ and fð�hÞ by

f̂fðhÞ ¼ fðhÞð1þ �1�fÞ; j�1j � 1

f̂fð�hÞ ¼ fð�hÞð1þ �2�fÞ; j�2j � 1:

Thus even if the rest of the calculation were carried out exactly, it is trivial to show that

f̂fðhÞ � f̂fð�hÞ
2h

� fðhÞ � fð�hÞ
2h

’ 2��f
fð�Þ
2h

; j�j � 1:

The difference between the quantity actually calculated and the quantity which one attempts to calculate

may be as large as �ffð�Þ=h; for example using h ¼ 10�40 and �m ¼ 10�7 this gives a ‘conditioning error’

of 1033fð�Þ.
In practice much more sophisticated formulae than (1) above are used, and for these and for the
corresponding higher-derivative formulae the error analysis is different and more complicated in detail.
But invariably the theory contains the same overall feature. In a finite length calculation, the error is
composed of two main parts: a discretisation error which increases as h becomes large and is zero for
h ¼ 0; and a ‘conditioning’ error due to amplification of round-off error in function evaluation, which
increases as h becomes small and is infinite for h ¼ 0.

The routine in this chapter has to take into account internally both these sources of error in the results.

Thus it returns pairs of results, DERðjÞ and ERESTðjÞ where DERðjÞ is an approximation to f ðjÞðx0Þ and
ERESTðjÞ is an estimate of the error in the approximation DERðjÞ. If the routine has not been misled,
DERðjÞ and ERESTðjÞ satisfy

jDERðjÞ � f ðjÞðx0Þj � ERESTðjÞ:
In this respect, numerical differentiation routines are fundamentally different from other routines. The user
does not specify an error criterion. Instead the routine provides the error estimate and this may be very
large.

We mention here a terminological distinction. A fully automatic routine is one in which the user does not
need to provide any information other than that required to specify the problem. Such a routine (at a cost
in computing time) decides an appropriate internal parameter such as the step length h by itself. On the
other hand a routine which requires the user to provide a step length h, but automatically chooses from
several different formulae each based on the specified step length, is termed a semi-automatic routine.

The situation described above must have seemed rather depressing when hand machines were in common

use. For example in the simple illustration one does not know the values of the quantities f 000ð�Þ or �f
involved in the error estimates, and the idea of altering the value of h and starting again must have seemed
appalling. However, by present-day standards, it is a relatively simple matter to write a program which
carries out all the previously considered time-consuming calculations which may seem necessary. None of
the routines envisaged for this chapter are particularly revolutionary in concept. They simply utilise the
computer for the sort of task for which it was originally designed. It carries out simple tedious calculations
which are necessary to estimate the accuracy of the results of other even simpler tedious calculations.

2.2 Examples of Applications for Numerical Differentiation Routines

(a) One immediate use to which a set of derivatives at a point is likely to be put is that of constructing a
Taylor series representation:

fðxÞ ¼ fðx0Þ þ
Xn
j¼1

fðjÞðx0Þ
j!

ðx� x0Þj þ
f ðnþ1Þð�Þ
ðnþ 1Þ! ðx� x0Þnþ1; j� � x0j � x:

This infinite series converges so long as jx� x0j < Rc (the radius of convergence) and it is only for
these values of x that such a series is likely to be used. In this case in forming the sum, the required

accuracy in fðjÞðx0Þ diminishes with increasing j.

The series formed from the Taylor series using elementary operations such as integration or
differentiation has the same overall characteristic. A technique based on a Taylor series expansion

D04 – Numerical Differentiation Introduction – D04

[NP3546/20A] D04.3

may be quite accurate, even if the individual derivatives are not, so long as the less accurate
derivatives are associated with known small coefficients.

The error introduced by using n approximate derivatives DERðjÞ is bounded by

Xn
j¼1

ERESTðjÞ jx� x0jj=j!

Thus, if the user is prepared to base the result on a truncated Taylor series, the additional error
introduced by using approximate Taylor coefficients can be readily bounded from the values of
ERESTðjÞ. However, in an automatic code the user must be prepared to introduce some alternative
approach in case this error bound turns out to be unduly high.

In this sort of application the accuracy of the result depends on the size of the errors in the numerical
differentiation. There are other applications where the effect of large errors ERESTðjÞ is merely to
prolong a calculation, but not to impair the final accuracy.

(b) A simple Taylor series approach such as described in (a) is used to find a starting value for a rapidly
converging but extremely local iterative process.

(c) The technique known as ‘subtracting out the singularity’ as a preliminary to numerical quadrature may
be extended and may be carried out approximately. Thus suppose we are interested in evaluating

Z 1

0

x�ð1=2Þ�ðxÞ dx;

we have an automatic quadrature routine available, and we have a routine available for �ðxÞ which we

know to be an analytic function. An integrand function like x�ð1=2Þ�ðxÞ is generally accepted to be
difficult for an automatic integrator because of the singularity. If �ðxÞ and some of its derivatives at
the singularity x ¼ 0 are known one may effectively ‘subtract out’ the singularity using the following
identity:

Z 1

0

x�ð1=2Þ�ðxÞdx ¼
Z 1

0

x�ð1=2Þð�ðxÞ � �ð0Þ �Ax�Bx2=2Þ dxþ 2�ð0Þ þ 2A=3þB=5 ð2Þ

with A ¼ �0ð0Þ and B ¼ �00ð0Þ.
The integrand function on the right of (2) has no singularity, but its third derivative does. Thus using
numerical quadrature for this integral is much cheaper than using numerical quadrature for the original
integral (in the left-hand side of (2)).

However, (2) is an identity whatever values of A and B are assigned. Thus the same procedure can

be used with A and B being approximations to �0ð0Þ and �00ð0Þ provided by a numerical
differentiation routine. The integrand would now be more difficult to integrate than if A and B were
correct but still much less difficult than the original integrand (on the left-hand side of (2)). But,
assuming that the automatic quadrature routine is reliable, the overall result would still be correct.
The effect of using approximate derivatives rather than exact derivatives does not impair the accuracy
of the result. It simply makes the result more expensive to obtain, but not nearly as expensive as if no
derivatives were used at all.

(d) The calculation of a definite integral may be based on the Euler–Maclaurin expansion

Z 1

0

fðxÞdx ¼ 1

m

Xm
j¼0

00fðj=mÞ �
Xl

s¼1

B2s

2s!

ðf ð2s�1Þð1Þ � f ð2s�1Þð0ÞÞ
m2s

þOðmð�2l�2ÞÞ:

Here B2s is a Bernoulli number. If one fixes a value of l then as m is increased the right-hand side
(without the remainder term) approaches the true value of the integral. This statement remains true

whatever values are used to replace fð2s�1Þð1Þ and fð2s�1Þð0Þ. If no derivatives are available, and this
formula is used (effectively with the derivatives replaced by zero) the rate of convergence is slow (like

m�2) and a large number of function evaluations may be used in calculating the trapezoidal rule sum
for large m before a sufficiently accurate result is attained. However, if approximate derivatives are
used, the initial rate of convergence is enhanced. In fact, in this example any derivative
approximation which is closer than the approximation zero is helpful. Thus the use of inaccurate

Introduction – D04 NAG Fortran Library Manual

D04.4 [NP3546/20A]

derivatives may have the effect of shortening the overall calculation, since a sufficiently accurate result
may be obtained using a smaller value of m, without impairing the accuracy of the result. (The
resemblance with Gregory’s formula is superficial. Here l is kept fixed and m is increased, ensuring a
convergent process.)

The examples given above are only intended to illustrate the sort of use to which approximate
derivatives may be put. Very simple illustrations have been used for clarity, and in such simple cases
there are usually more efficient approaches to the problem. The same ideas applied in a more
complicated or restrictive setting may provide an efficient approach to a problem for which no simple
standard approach exists.

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

(a) At the present time there is only one numerical differentiation routine available in this chapter,
D04AAF. This is a semi-automatic routine for obtaining approximations to the first fourteen
derivatives of a real valued function fðxÞ at a specified point x0. The user provides a FUNCTION
representing fðxÞ, the value of x0, an upper limit n � 14 on the order of the derivatives required and
a step length h. The routine returns a set of approximations DERðjÞ and corresponding error
estimates ERESTðjÞ which hopefully satisfy

jDERðjÞ � f ðjÞðx0Þj � ERESTðjÞ; j ¼ 1; 2; . . . ; n � 14:

We term this routine a semi-automatic routine because the user provides a step length h and this is not
needed to specify the problem.

It is important that the error estimate ERESTðjÞ is taken into consideration by the user before any use
of DERðjÞ is made. The actual size of ERESTðjÞ depends on the analytic structure of the function,
on the word length of the machine used and on the step size h, and is difficult to predict. Thus the
user has to run the routine to find out how accurate the results are. Usually the user will find the
higher-order derivatives are successively more inaccurate and that past a certain order, say 10 or 11,
the size of ERESTðjÞ actually exceeds DERðjÞ. Clearly when this happens the approximation
DERðjÞ is unusable.

(b) We have investigated a fully automatic routine, which has the same calling sequence with the
exception that a step length is not required. This routine finds an appropriate step length h for itself.
The cost seems to be greater by a factor of 3 to 5 but the returned values of ERESTðjÞ are usually
smaller. It is our intention to develop such a routine only if there is a demand for it in which case the
experience of users with the presently available semi-automatic routine will be very helpful.

(c) There is available in the algorithm section of CACM (Lyness and Ande (1971)) a semi-automatic
Fortran routine for numerical differentiation of an analytical function fðzÞ at a possibly complex
abscissa z0. This is a stable problem. It can be used for any problem for which D04AAF might be
used and produces more accurate results, and derivatives of arbitrary high order. However, even if z0
is real and fðzÞ is real for z, this routine requires a user-supplied FUNCTION which evaluates fðzÞ
for complex values of z and it makes use of complex arithmetic.

(d) Routines are available in Chapter E02 to differentiate functions which are polynomials (in Chebyshev
series representation) or cubic splines (in B-spline representation).

4 Routines Withdrawn or Scheduled for Withdrawal

None.

D04 – Numerical Differentiation Introduction – D04

[NP3546/20A] D04.5

5 References

Lyness J N and Ande G (1971) Algorithm 413, ENTCAF and ENTCRE: Evaluation of normalised Taylor
coefficients of an analytic function Comm. ACM 14 (10) 669–675

Lyness J N and Moler C B (1967) Numerical differentiation of analytic functions SIAM J. Numer. Anal. 4
(2) 202–210

Introduction – D04 NAG Fortran Library Manual

D04.6 (last) [NP3546/20A]

	D04
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Description of the Problem
	2.2 Examples of Applications for Numerical Differentiation Routines

	3 Recommendations on Choice and Use of Available Routines
	4 Routines Withdrawn or Scheduled for Withdrawal
	5 References

	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

