NAG Fortran Library Routine Document D03PYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

This routine may be used in conjunction with either D03PDF/D03PDA or D03PJF/D03PJA. It computes the solution and its first derivative at user-specified points in the spatial co-ordinate.

2 Specification

```
SUBROUTINE DO3PYF(NPDE, U, NBKPTS, XBKPTS, NPOLY, NPTS, XP, INTPTS,

ITYPE, UP, W, NW, IFAIL)

INTEGER

NPDE, NBKPTS, NPOLY, NPTS, INTPTS, ITYPE, NW, IFAIL

real

U(NPDE,NPTS), XBKPTS(NBKPTS), XP(INTPTS),

1

UP(NPDE,INTPTS,ITYPE), W(NW)
```

3 Description

D03PYF is an interpolation routine for evaluating the solution of a system of partial differential equations (PDEs), or the PDE components of a system of PDEs with coupled ordinary differential equations (ODEs), at a set of user-specified points. The solution of a system of equations can be computed using D03PDF/D03PDA or D03PJF/D03PJA on a set of mesh points; D03PYF can then be employed to compute the solution at a set of points other than those originally used in D03PDF/D03PDA or D03PJF/D03PJA. It can also evaluate the first derivative of the solution. Polynomial interpolation is used between each of the break-points XBKPTS(i), for i = 1, 2, ..., NBKPTS. When the derivative is needed (ITYPE = 2), the array XP(INTPTS) must not contain any of the break-points, as the method, and consequently the interpolation scheme, assumes that only the solution is continuous at these points.

4 References

None.

5 Parameters

Note: the parameters U, NPTS, NPDE, XBKPTS, NBKPTS, W and NW must be supplied unchanged from either D03PDF/D03PDA or D03PJF/D03PJA.

1: NPDE – INTEGER Input

On entry: the number of PDEs.

Constraint: NPDE ≥ 1 .

2: U(NPDE,NPTS) – *real* array

Input

On entry: the PDE part of the original solution returned in the parameter U by the routine D03PDF/D03PDA or D03PJF/D03PJA.

3: NBKPTS – INTEGER Input

On entry: the number of break-points.

Constraint: NBKPTS ≥ 2 .

[NP3546/20A] D03PYF.1

4: XBKPTS(NBKPTS) – *real* array

Input

On entry: XBKPTS(i), for i = 1, 2, ..., NBKPTS, must contain the break-points as used by D03PDF/D03PDA or D03PJF/D03PJA.

Constraint: XBKPTS(1) < XBKPTS(2) < ... < XBKPTS(NBKPTS).

5: NPOLY – INTEGER

Input

On entry: the degree of the Chebyshev polynomial used for approximation as used by D03PDF/D03PDA or D03PJF/D03PJA.

Constraint: $1 \le NPOLY \le 49$.

6: NPTS – INTEGER

Input

On entry: the number of mesh points as used by D03PDF/D03PDA or D03PJF/D03PJA.

Constraint: NPTS = $(NBKPTS - 1) \times NPOLY + 1$.

7: XP(INTPTS) – *real* array

Input

On entry: XP(i), for i = 1, 2, ..., INTPTS, must contain the spatial interpolation points.

Constraint: $XBKPTS(1) \le XP(1) < XP(2) < ... < XP(INTPTS) \le XBKPTS(NBKPTS)$.

When ITYPE = 2, $XP(i) \neq XBKPTS(j)$, for i = 1, 2, ..., INTPTS; j = 2, 3, ..., NBKPTS - 1.

8: INTPTS – INTEGER

Input

On entry: the number of interpolation points.

Constraint: INTPTS ≥ 1 .

9: ITYPE – INTEGER

Input

On entry: specifies the interpolation to be performed.

If ITYPE = 1, the solution at the interpolation points are computed. If ITYPE = 2, both the solution and the first derivative at the interpolation points are computed.

Constraint: ITYPE = 1 or 2.

10: UP(NPDE,INTPTS,ITYPE) – *real* array

Output

On exit: if ITYPE = 1, UP(i, j, 1), contains the value of the solution $U_i(x_j, t_{out})$, at the interpolation points $x_i = XP(j)$, for j = 1, 2, ..., INTPTS; i = 1, 2, ..., NPDE.

If ITYPE = 2, UP(i, j, 1) contains $U_i(x_j, t_{\text{out}})$ and UP(i, j, 2) contains $\frac{\partial U_i}{\partial x}$ at these points.

11: W(NW) - real array

Input

On entry: the array W as returned by D03PDF/D03PDA or D03PJF/D03PJA. The contents of W must not be changed from the call to D03PDF/D03PDA or D03PJF/D03PJA.

12: NW – INTEGER

Input

On entry: the size of the workspace W, as in D03PDF/D03PDA or D03PJF/D03PJA.

13: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the

D03PYF.2 [NP3546/20A]

value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

```
IFAIL = 1
```

```
On entry, ITYPE \neq 1 or 2, or NPOLY < 1, or NPDE < 1, or NBKPTS < 2, or INTPTS < 1, or NPTS \neq (NBKPTS - 1) \times NPOLY + 1, or XBKPTS(i), for i=1,\ldots, NBKPTS, are not ordered.
```

IFAIL = 2

On entry, the interpolation points XP(i), for $i=1,\ldots,INTPTS$, are not in strictly increasing order, or when ITYPE=2, at least one of the interpolation points stored in XP is equal to one of the break-points stored in XBKPTS.

```
IFAIL = 3
```

The user is attempting extrapolation, that is, one of the interpolation points XP(i), for some i, lies outside the interval [XBKPTS(1),XBKPTS(NBKPTS)]. Extrapolation is not permitted.

7 Accuracy

See the documents for D03PDF/D03PDA or D03PJF/D03PJA.

8 Further Comments

None.

9 Example

See Section 9 of the document for D03PDF/D03PDA.

[NP3546/20A] D03PYF.3 (last)