NAG Fortran Library Routine Document D02PWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

D02PWF resets the end-point in an integration performed by D02PDF.

2 Specification

SUBROUTINE DO2PWF(TENDNU, IFAIL)
INTEGER IFAIL
real TENDNU

3 Description

D02PWF and its associated routines (D02PVF, D02PDF, D02PXF, D02PYF, D02PZF) solve the initial value problem for a first-order system of ordinary differential equations. The routines, based on Runge–Kutta methods and derived from RKSUITE (Brankin *et al.* (1991)), integrate

$$y' = f(t, y)$$
 given $y(t_0) = y_0$

where y is the vector of n solution components and t is the independent variable.

D02PWF is used to reset the final value of the independent variable, t_f , when the integration is already underway. It can be used to extend or reduce the range of integration. The new value must be beyond the current value of the independent variable (as returned in TNOW by D02PDF) in the current direction of integration. It is much more efficient to use D02PWF for this purpose than to use D02PVF which involves the overhead of a complete restart of the integration.

If you want to change the direction of integration then you must restart by a call to D02PVF.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the initial value problems for ODEs *SoftReport 91-S1* Southern Methodist University, Dallas

5 Parameters

1: TENDNU – real Input

On entry: the new value for t_f .

Constraints: sign(TENDNU - TNOW) = sign(TEND - TSTART), where TSTART and TEND are as supplied in the previous call to D02PVF and TNOW is returned by the preceding call to D02PDF. TENDNU must be distinguishable from TNOW for the method and the precision of the machine being used.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the

[NP3546/20A] D02PWF.1

value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

On entry, an invalid input value for TENDNU was detected or an invalid call to D02PWF was made, for example without a previous call to the integration routine D02PDF. If on entry IFAIL = 0 or -1, the precise form of the error will be detailed on the current error message unit (as defined by X04AAF). You cannot continue integrating the problem.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

We integrate a two body problem. The equations for the coordinates (x(t), y(t)) of one body as functions of time t in a suitable frame of reference are

$$x'' = -\frac{x}{r^3}$$

$$y'' = -\frac{y}{r^3}, \quad r = \sqrt{x^2 + y^2}.$$

The initial conditions

$$x(0) = 1 - \epsilon, \quad x'(0) = 0$$

 $y(0) = 0, \qquad y'(0) = \sqrt{\frac{1 + \epsilon}{1 - \epsilon}}$

lead to elliptic motion with $0 < \epsilon < 1$. We select $\epsilon = 0.7$ and repose as

$$y'_{1} = y_{3}$$

 $y'_{2} = y_{4}$
 $y'_{3} = -\frac{y_{1}}{r^{3}}$
 $y'_{4} = -\frac{y_{2}}{r^{3}}$

over the range $[0,6\pi]$. We use relative error control with threshold values of $1.0\mathrm{E}{-10}$ for each solution component and compute the solution at intervals of length π across the range using D02PWF to reset the end of the integration range. We use a high-order Runge–Kutta method (METHOD = 3) with tolerances $TOL = 1.0\mathrm{E}{-4}$ and $TOL = 1.0\mathrm{E}{-5}$ in turn so that we may compare the solutions. The value of π is obtained by using X01AAF.

Note that the length of WORK is large enough for any valid combination of input arguments to D02PVF.

D02PWF.2 [NP3546/20A]

9.1 Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
DO2PWF Example Program Text
  Mark 17 Revised. NAG Copyright 1995.
   .. Parameters ..
                     NOUT
   INTEGER
  PARAMETER
                     (NOUT=6)
   INTEGER
                    NEQ, LENWRK, METHOD
  PARAMETER
                    (NEQ=4, LENWRK=32*NEQ, METHOD=3)
                     ZERO, ONE, SIX, ECC
  real
                    (ZERO=0.0e0, ONE=1.0e0, SIX=6.0e0, ECC=0.7e0)
  PARAMETER
   .. Local Scalars ..
                    HNEXT, HSTART, PI, TEND, TFINAL, TINC, TNOW, TOL,
  real
                     TSTART, WASTE
                     I, IFAIL, J, L, NPTS, STPCST, STPSOK, TOTF
   INTEGER
  LOGICAL
                    ERRASS
   .. Local Arrays ..
  real
                     THRES(NEQ), WORK(LENWRK), YNOW(NEQ), YPNOW(NEQ),
                     YSTART (NEQ)
   .. External Functions ..
  real
                     X01AAF
  EXTERNAL
                    X01AAF
   .. External Subroutines ..
EXTERNAL DO2PDF, D02PVF, D02PWF, D02PYF, F
  EXTERNAL
   .. Intrinsic Functions ..
   INTRINSIC
                    SQRT
   .. Executable Statements ..
   WRITE (NOUT,*) 'DO2PWF Example Program Results'
Set initial conditions and input for DO2PVF
   PI = X01AAF(ZERO)
   TSTART = ZERO
   YSTART(1) = ONE - ECC
  YSTART(2) = ZERO
   YSTART(3) = ZERO
   YSTART(4) = SQRT((ONE+ECC)/(ONE-ECC))
   TFINAL = SIX*PI
  DO 20 L = 1, NEQ
      THRES(L) = 1.0e-10
20 CONTINUE
  ERRASS = .FALSE.
   HSTART = ZERO
Set output control
  NPTS = 6
   TINC = TFINAL/NPTS
   DO 60 I = 1, 2
      IF (I.EQ.1) TOL = 1.0e-4
      IF (I.EQ.2) TOL = 1.0e-5
      J = NPTS - 1
      TEND = TFINAL - J*TINC
      IFAIL = 0
      CALL DO2PVF(NEO, TSTART, YSTART, TEND, TOL, THRES, METHOD,
                   'Complex Task', ERRASS, HSTART, WORK, LENWRK, IFAIL)
      WRITE (NOUT, '(/A,D8.1)') ' Calculation with TOL = ', TOL
      WRITE (NOUT, '(/A/)') '
                                 t
                                                        y2'//
                                            у1
                              y4′
      WRITE (NOUT, (1X, F6.3, 4(3X, F8.4)))) TSTART, (YSTART(L), L=1, NEQ)
40
      CONTINUE
      IFAIL = -1
      CALL DO2PDF(F, TNOW, YNOW, YPNOW, WORK, IFAIL)
```

[NP3546/20A] D02PWF.3

```
IF (IFAIL.EQ.O) THEN
         IF (TNOW.LT.TEND) GO TO 40
         WRITE (NOUT, '(1X,F6.3,4(3X,F8.4))') TNOW, (YNOW(L),L=1,NEQ)
         IF (TNOW.LT.TFINAL) THEN
            J = J - 1
            TEND = TFINAL - J*TINC
            CALL DO2PWF(TEND, IFAIL)
            GO TO 40
         END IF
      END IF
      IFAIL = 0
      CALL DO2PYF(TOTF,STPCST,WASTE,STPSOK,HNEXT,IFAIL)
      WRITE (NOUT, '(/A, 16)')
        ' Cost of the integration in evaluations of F is', TOTF
60 CONTINUE
  STOP
  END
  SUBROUTINE F(T,Y,YP)
   .. Scalar Arguments ..
  real
                Т
   .. Array Arguments ..
               Y(*), YP(*)
  real
  .. Local Scalars ..
  real
   .. Intrinsic Functions ..
  INTRINSIC SQRT
   .. Executable Statements ..
  R = SQRT(Y(1)**2+Y(2)**2)
  YP(1) = Y(3)
  YP(2) = Y(4)
  YP(3) = -Y(1)/R**3

YP(4) = -Y(2)/R**3
  RETURN
  END
```

9.2 Program Data

None.

D02PWF.4 [NP3546/20A]

9.3 Program Results

DO2PWF Example Program Results

Calculation with TOL = 0.1E-03

t	y1	y2	у3	y4
0.000	0.3000	0.0000	0.0000	2.3805
3.142	-1.7000	0.0000	-0.0000	-0.4201
6.283	0.3000	-0.0000	0.0001	2.3805
9.425	-1.7000	0.0000	-0.0000	-0.4201
12.566	0.3000	-0.0003	0.0016	2.3805
15.708	-1.7001	0.0001	-0.0001	-0.4201
18.850	0.3000	-0.0010	0.0045	2.3805

Cost of the integration in evaluations of F is 571

Calculation with TOL = 0.1E-04

t	y1	y2	у3	у4
0.000	0.3000	0.0000	0.0000	2.3805
3.142	-1.7000	-0.0000	0.0000	-0.4201
6.283	0.3000	0.0000	-0.0000	2.3805
9.425	-1.7000	0.0000	-0.0000	-0.4201
12.566	0.3000	-0.0001	0.0004	2.3805
15.708	-1.7000	0.0000	-0.0000	-0.4201
18.850	0.3000	-0.0003	0.0012	2.3805

Cost of the integration in evaluations of F is 748

[NP3546/20A] D02PWF.5 (last)