
NAG Fortran Library Routine Document

D02NGF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02NGF is a forward communication routine for integrating stiff systems of implicit ordinary differential
equations coupled with algebraic equations when the Jacobian is a full matrix.

2 Specification

SUBROUTINE D02NGF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
1 ITOL, INFORM, RESID, YSAVE, NY2DIM, JAC, WKJAC,
2 NWKJAC, MONITR, LDERIV, ITASK, ITRACE, IFAIL)

INTEGER NEQ, NEQMAX, ITOL, INFORM(23), NY2DIM, NWKJAC, ITASK,
1 ITRACE, IFAIL
real T, TOUT, Y(NEQMAX), YDOT(NEQMAX), RWORK(50+4*NEQMAX),

1 RTOL(*), ATOL(*), YSAVE(NEQMAX,NY2DIM), WKJAC(NWKJAC)
LOGICAL LDERIV(2)
EXTERNAL RESID, JAC, MONITR

3 Description

D02NGF is a general purpose routine for integrating the initial value problem for a stiff system of implicit
ordinary differential equations with coupled algebraic equations written in the form

Aðt; yÞy0 ¼ gðt; yÞ:
It is designed specifically for the case where the resulting Jacobian is a full matrix (see description of
argument JAC in Section 5).

Both interval and step oriented modes of operation are available and also modes designed to permit
intermediate output within an interval oriented mode.

An outline of a typical calling program for D02NGF is given below. It calls the full matrix linear algebra
setup routine D02NSF, and the Backward Differentiation Formula (BDF) integrator setup routine D02NVF,
and its diagnostic counterpart D02NYF.

C
C declarations
C

EXTERNAL RESID, JAC, MONITR
.
.
.

IFAIL = 0
CALL D02NVF(...,IFAIL)
CALL D02NSF(NEQ, NEQMAX, JCEVAL, NWKJAC, RWORK, IFAIL)
IFAIL = -1
CALL D02NGF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL,

+ ATOL, ITOL, INFORM, RESID, YSAVE, NY2DIM, JAC, WKJAC,
+ NWKJAC, MONITR, LDERIV, ITASK, ITRACE, IFAIL)
IF (IFAIL.EQ.1 .OR. IFAIL.GE.14) STOP
IFAIL = 0
CALL D02NYF(...)

.

.

.
STOP
END

D02 – Ordinary Differential Equations D02NGF

[NP3546/20A] D02NGF.1



The linear algebra setup routine, D02NSF, and one of the integrator setup routines, D02MVF, D02NVF or
D02NWF must be called prior to the call of D02NGF. The integrator diagnostic routine D02NYF may be
called after the call to D02NGF. There is also a routine, D02NZF, designed to permit the user to change
step size on a continuation call to D02NGF without restarting the integration process.

4 References

None.

5 Parameters

1: NEQ – INTEGER Input

On entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: NEQMAX – INTEGER Input

On entry: a bound on the maximum number of equations to be solved during the integration.

Constraint: NEQMAX � NEQ.

3: T – real Input/Output

On entry: the value of the independent variable, t. The input value of T is used only on the first call
as the initial point of the integration.

On exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – real Input/Output

On entry: the next value of t at which a computed solution is desired. For the initial t, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction (see also ITASK).

Constraint: TOUT 6¼ T.

On exit: normally unchanged. However when ITASK ¼ 6, then TOUT contains the value of T at
which initial values have been computed without performing any integration. See descriptions of
ITASK and LDERIV below.

5: Y(NEQMAX) – real array Input/Output

On entry: the values of the dependent variables (solution). On the first call the first NEQ elements
of y must contain the vector of initial values.

On exit: the computed solution vector, evaluated at t (usually t ¼ TOUT).

6: YDOT(NEQMAX) – real array Input/Output

On entry: if LDERIVð1Þ ¼ :TRUE:, YDOT must contain approximations to the time derivatives y0

of the vector y. If LDERIVð1Þ ¼ :FALSE:, then YDOT need not be set on entry.

On exit: the time derivatives y0 of the vector y at the last integration point.

7: RWORK(50+4*NEQMAX) – real array Workspace

8: RTOL(*) – real array Input

Note: the dimension of the array RTOL must be at least 1 or NEQ (see ITOL).

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

D02NGF NAG Fortran Library Manual

D02NGF.2 [NP3546/20A]



9: ATOL(*) – real array Input

Note: the dimension of the array ATOL must be at least 1 or NEQ (see ITOL).

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D02NGF whether to
interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be satisfied is
kei=wik < 1:0, where wi is defined as follows:

ITOL RTOL ATOL w_{i}

1 scalar scalar RTOLð1Þ � jyij þ ATOLð1Þ
2 scalar vector RTOLð1Þ � jyij þ ATOLðiÞ
3 vector scalar RTOLðiÞ � jyij þ ATOLð1Þ
4 vector vector RTOLðiÞ � jyij þ ATOLðiÞ

ei is an estimate of the local error in yi computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: 1 � ITOL � 4.

11: INFORM(23) – INTEGER array Workspace

12: RESID – SUBROUTINE, supplied by the user. External Procedure

RESID must evaluate the residual

r ¼ gðt; yÞ �Aðt; yÞy0

in one case and

r ¼ �Aðt; yÞy0

in another.

Its specification is:

SUBROUTINE RESID(NEQ, T, Y, YDOT, R, IRES)

INTEGER NEQ, IRES
real T, Y(NEQ), YDOT(NEQ), R(NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – real Input

On entry: the current value of the independent variable, t.

3: Y(NEQ) – real array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ;NEQ.

4: YDOT(NEQ) – real array Input

On entry: the value of y0i at t, for i ¼ 1; 2; . . . ;NEQ.

5: R(NEQ) – real array Output

On exit: RðiÞ must contain the ith component of r, for i ¼ 1; 2; . . . ;NEQ where

r ¼ gðt; yÞ �Aðt; yÞy0 ð1Þ

D02 – Ordinary Differential Equations D02NGF

[NP3546/20A] D02NGF.3



or

r ¼ �Aðt; yÞy0 ð2Þ
and where the definition of r is determined by the input value of IRES.

6: IRES – INTEGER Input/Output

On entry: the form of the residual that must be returned in array R. If IRES ¼ �1, then
the residual defined in equation (2) above must be returned. If IRES ¼ 1, then the
residual defined in equation (1) above must be returned.

On exit: IRES should be unchanged unless one of the following actions is required of the
integrator, in which case IRES should be set accordingly.

IRES ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3

Indicates to the integrator that an error condition has occurred in the solution vector,
its time derivative or in the value of t. The integrator will use a smaller time step
to try to avoid this condition. If this is not possible, the integrator returns to the
calling (sub)program with the error indicator set to IFAIL ¼ 7.

IRES ¼ 4

Indicates to the integrator to stop its current operation and to enter the MONITR
routine immediately with parameter IMON ¼ �2.

RESID must be declared as EXTERNAL in the (sub)program from which D02NGF is called.
Parameters denoted as Input must not be changed by this procedure.

13: YSAVE(NEQMAX,NY2DIM) – real array Workspace
14: NY2DIM – INTEGER Input

On entry: the second dimension of the array YSAVE as declared in the (sub)program from which
D02NGF is called. An appropriate value for NY2DIM is described in the specifications of the
integrator setup routines D02MVF, D02NVF and D02NWF. This value must be the same as that
supplied to the integrator setup routine.

15: JAC – SUBROUTINE, supplied by the user. External Procedure

JAC must evaluate the Jacobian of the system. If this option is not required, the actual argument for
JAC must be the dummy routine D02NGZ. (D02NGZ is included in the NAG Fortran Library and
so need not be supplied by the user. Its name may be implementation dependent: see the Users’
Note for your implementation for details.) The user indicates to the integrator whether this option is
to be used by setting the parameter JCEVAL appropriately in a call to the linear algebra setup
routine D02NSF.

First we must define the system of nonlinear equations which is solved internally by the integrator.

The time derivative, y0, generated internally has the form

y0 ¼ ðy� zÞ=ðhdÞ;
where h is the current step size and d is a parameter that depends on the integration method in use.
The vector y is the current solution and the vector z depends on information from previous time

steps. This means that d
dy0 ðÞ ¼ 1

ðhdÞ
d
dy ðÞ. The system of nonlinear equations that is solved has the

form

Aðt; yÞy0 � gðt; yÞ ¼ 0

but is solved in the form

rðt; yÞ ¼ 0;

D02NGF NAG Fortran Library Manual

D02NGF.4 [NP3546/20A]



where r is the function defined by

rðt; yÞ ¼ ðhdÞðAðt; yÞðy� zÞ=ðhdÞ � gðt; yÞÞ:

It is the Jacobian matrix @r
@y that the user must supply in the routine JAC as follows:

@ri
@yj

¼ aijðt; yÞ þ ðhdÞ @

@yj

XNEQ
k¼1

aikðt; yÞy0k � giðt; yÞ
 !

:

Its specification is:

SUBROUTINE JAC(NEQ, T, Y, YDOT, H, D, P)

INTEGER NEQ
real T, Y(NEQ), YDOT(NEQ), H, D, P(NEQ,NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – real Input

On entry: the current value of the independent variable, t.

3: Y(NEQ) – real array Input

On entry: the current solution component yi, for i ¼ 1; 2; . . . ;NEQ.

4: YDOT(NEQ) – real array Input

On entry: the derivative of the solution at the current point t.

5: H – real Input

On entry: the current step size.

6: D – real Input

On entry: the parameter d which depends on the integration method.

7: P(NEQ,NEQ) – real array Output

On exit: Pði; jÞ must contain @ri
@yj
, for i; j ¼ 1; 2; . . . ;NEQ.

Only non-zero elements of this array need be set, since it is preset to zero before the call
to JAC.

JAC must be declared as EXTERNAL in the (sub)program from which D02NGF is called.
Parameters denoted as Input must not be changed by this procedure.

16: WKJAC(NWKJAC) – real array Workspace
17: NWKJAC – INTEGER Input

On entry: the dimension of the array WKJAC as declared in the (sub)program from which D02NGF
is called. This value must be the same as that supplied to the linear algebra setup routine D02NSF.

Constraint: NWKJAC � NEQMAX� ðNEQMAXþ 1Þ.

18: MONITR – SUBROUTINE, supplied by the user. External Procedure

MONITR performs tasks requested by the user. If this option is not required, then the actual
argument for MONITR must be the dummy routine D02NBY. (D02NBY is included in the NAG
Fortran Library and so need not be supplied by the user. Its name may be implementation
dependent: see the Users’ Note for your implementation for details.)

D02 – Ordinary Differential Equations D02NGF

[NP3546/20A] D02NGF.5



Its specification is:

SUBROUTINE MONITR(NEQ, NEQMAX, T, HLAST, HNEXT, Y, YDOT, YSAVE, R,
1 ACOR, IMON, INLN, HMIN, HMAX, NQU)

INTEGER NEQ, NEQMAX, IMON, INLN, NQU
real T, HLAST, HNEXT, Y(NEQMAX), YDOT(NEQMAX),

1 YSAVE(NEQMAX,*), R(NEQMAX), ACOR(NEQMAX,2), HMIN,
2 HMAX

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: NEQMAX – INTEGER Input

On entry: an upper bound on the number of equations to be solved.

3: T – real Input

On entry: the current value of the independent variable.

4: HLAST – real Input

On entry: the last step size successfully used by the integrator.

5: HNEXT – real Input/Output

On entry: the step size that the integrator proposes to take on the next step.

On exit: the next step size to be used. If this is different from the input value, then IMON
must be set to 4.

6: Y(NEQMAX) – real array Input/Output

On entry: the values of the dependent variables, y, evaluated at t.

On exit: these values must not be changed unless IMON is set to 2.

7: YDOT(NEQMAX) – real array Input

On entry: the time derivatives y0 of the vector y.

8: YSAVE(NEQMAX,*) – real array Input

On entry: workspace to enable the user to carry out interpolation using either of the
routines D02XJF or D02XKF.

9: R(NEQMAX) – real array Input

On entry: if IMON ¼ 0 and INLN ¼ 3, then the first NEQ elements contain the residual

vector Aðt; yÞy0 � gðt; yÞ.

10: ACOR(NEQMAX,2) – real array Input

On entry: with IMON ¼ 1, ACORði; 1Þ contains the weight used for the ith equation
when the norm is evaluated, and ACORði; 2Þ contains the estimated local error for the ith
equation. The scaled local error at the end of a timestep may be obtained by calling the
real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ, ACOR(1,2), ACOR(1,1), IFAIL)

C CHECK IFAIL BEFORE PROCEEDING

D02NGF NAG Fortran Library Manual

D02NGF.6 [NP3546/20A]



11: IMON – INTEGER Input/Output

On entry: a flag indicating under what circumstances MONITR was called:

IMON ¼ �2

Entry from the integrator after IRES ¼ 4 (set in RESID) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1

The current step failed repeatedly.

IMON ¼ 0

Entry after a call to the internal nonlinear equation solver (see below).

IMON ¼ 1

The current step was successful.

On exit: IMON may be reset to determine subsequent action in D02NGF:

IMON ¼ �2

Integration is to be halted. A return will be made from the integrator to the calling
(sub)program with IFAIL ¼ 12.

IMON ¼ �1

Allow the integrator to continue with its own internal strategy. The integrator will
try up to 3 restarts unless IMON is set 6¼ �1 on exit.

IMON ¼ 0

Return to the internal nonlinear equation solver, where the action taken is
determined by the value of INLN (see below).

IMON ¼ 1

Normal exit to the integrator to continue integration.

IMON ¼ 2

Restart the integration at the current time point. The integrator will restart from
order 1 when this option is used. The MONITR provided solution Y will be used
for the initial conditions.

IMON ¼ 3

Try to continue with the same step size and order as was to be used before the call
to MONITR. HMIN and HMAX may be altered if desired.

IMON ¼ 4

Continue the integration but using a new value HNEXT and possibly new values of
HMIN and HMAX.

12: INLN – INTEGER Output

On exit: the action to be taken by the internal nonlinear equation solver when MONITR is
exited with IMON ¼ 0. By setting INLN ¼ 3 and returning to the integrator, the residual
vector is evaluated and placed in the array R, and then MONITR is called again. At
present this is the only option available: INLN must not be set to any other value.

13: HMIN – real Input/Output

On entry: the minimum step size to be taken on the next step.

On exit: the minimum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4.

D02 – Ordinary Differential Equations D02NGF

[NP3546/20A] D02NGF.7



14: HMAX – real Input/Output

On entry: the maximum step size to be taken on the next step.

On exit: the maximum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4. If HMAX is set to zero, no limit is assumed.

15: NQU – INTEGER Input

On entry: the order of the integrator used on the last step. This is supplied to enable the
user to carry out interpolation using either of the routines D02XJF or D02XKF.

MONITR must be declared as EXTERNAL in the (sub)program from which D02NGF is called.
Parameters denoted as Input must not be changed by this procedure.

19: LDERIV(2) – LOGICAL array Input/Output

On entry: LDERIV(1) must be set to .TRUE., if the user has supplied both an initial y and an initial

y0. LDERIV(1) must be set to .FALSE., if only the initial y has been supplied.

LDERIV(2) must be set to .TRUE., if the integrator is to use a modified Newton method to evaluate

the initial y and y0. Note that y and y0, if supplied, are used as initial estimates. This method
involves taking a small step at the start of the integration, and if ITASK ¼ 6 on entry, T and TOUT
will be set to the result of taking this small step. LDERIV(2) must be set to .FALSE., if the

integrator is to use functional iteration to evaluate the initial y and y0, and if this fails a modified
Newton method will then be attempted. LDERIVð2Þ ¼ :TRUE: is recommended if there are

implicit equations or the initial y and y0 are zero.

On exit: LDERIV(1) is normally unchanged. However if ITASK ¼ 6 and internal initialisation was
successful then LDERIVð1Þ ¼ :TRUE:.

LDERIVð2Þ ¼ :TRUE:, if implicit equations were detected. Otherwise LDERIVð2Þ ¼ :FALSE:.

20: ITASK – INTEGER Input

On entry: the task to be performed by the integrator. The permitted values for ITASK and their
meanings are detailed below:

ITASK ¼ 1

Normal computation of output values of yðtÞ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2

Take one step only and return.

ITASK ¼ 3

Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4

Normal computation of output values of yðtÞ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
prior to the first call to the integrator, or specified in the optional input routine prior to a
continuation call. TCRIT may be equal to or beyond TOUT, but not before it, in the
direction of integration.

ITASK ¼ 5

Take one step only and return, without passing TCRIT. TCRIT must be specified as under
ITASK ¼ 4.

ITASK ¼ 6

The integrator will solve for the initial values of y and y0 only and then return to the calling
(sub)program without doing the integration. This option can be used to check the initial

D02NGF NAG Fortran Library Manual

D02NGF.8 [NP3546/20A]



values of y and y0. Functional iteration or a ‘small’ backward Euler method used in
conjunction with a damped Newton iteration is used to calculate these values (see LDERIV
above). Note that if a backward Euler step is used then the value of t will have been
advanced a short distance from the initial point.

Note: if D02NGF is recalled with a different value of ITASK (and TOUT altered), then the
initialisation procedure is repeated, possibly leading to different initial conditions.

Constraint: 1 � ITASK � 6.

21: ITRACE – INTEGER Input

On entry: the level of output that is printed by the integrator. ITRACE may take the value �1, 0, 1,
2 or 3. If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed. If
ITRACE ¼ �1, no output is generated. If ITRACE ¼ 0, only warning messages are printed on the
current error message unit (see X04AAF). If ITRACE > 0 then warning messages are printed as
above, and on the current advisory message unit (see X04ABF) output is generated which details
Jacobian entries, the nonlinear iteration and the time integration. The advisory messages are given
in greater detail the larger the value of ITRACE.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An illegal input was detected on entry, or after an internal call to MONITR. If ITRACE > �1, then
the form of the error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested task,
but the integration was successful as far as T. The problem may have a singularity, or the local
error requirements may be inappropriate.

D02 – Ordinary Differential Equations D02NGF

[NP3546/20A] D02NGF.9



IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. This may be caused by an inaccurate Jacobian
matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see description of ITOL). Pure relative
error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now vanished. The
integration was successful as far as T.

IFAIL ¼ 7

The user-supplied subroutine RESID set its error flag (IRES ¼ 3) continually despite repeated
attempts by the integrator to avoid this.

IFAIL ¼ 8

LDERIVð1Þ ¼ :FALSE: on entry but the internal initialisation routine was unable to initialise y0

(more detailed information may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 9

A singular Jacobian @r
@y has been encountered. The user should check the problem formulation and

Jacobian calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit see X04AAF).

IFAIL ¼ 11

The user-supplied subroutine RESID signalled the integrator to halt the integration and return
(IRES ¼ 2). Integration was successful as far as T.

IFAIL ¼ 12

The user-supplied subroutine MONITR set IMON ¼ �2 and so forced a return but the integration
was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and ATOL
is unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that the routine is unable to start the integration.

IFAIL ¼ 15

The linear algebra setup routine D02NSF was not called before the call to D02NGF.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the parameters RTOL and
ATOL, and to a much lesser extent by the choice of norm. Users are advised to use scalar error control
unless the components of the solution are expected to be poorly scaled. For the type of decaying solution
typical of many stiff problems, relative error control with a small absolute error threshold will be most
appropriate (that is the user is advised to choose ITOL ¼ 1 with ATOL(1) small but positive).

D02NGF NAG Fortran Library Manual

D02NGF.10 [NP3546/20A]



8 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser

extent on the degree of stiffness of the problem. For D02NGF the cost is proportional to NEQ3, though

for problems which are only mildly nonlinear the cost may be dominated by factors proportional to NEQ2

except for very large problems.

In general the user is advised to choose the BDF option (setup routine D02NVF) but if efficiency is of

great importance and especially if it is suspected that @
@y A�1g
� �

has complex eigenvalues near the

imaginary axis for some part of the integration, the user should try the BLEND option (setup routine
D02NWF).

9 Example

We solve the well-known stiff Robertson problem written in implicit form

r1 ¼ �0:04a þ 1:0E4bc � a0

r2 ¼ 0:04a � 1:0E4bc � 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 over the range [0,0.1] with vector error control
(ITOL ¼ 4), the BDF method (setup routine D02NVF) and functional iteration. The Jacobian is calculated
numerically if the functional iteration encounters difficulty and the integration is in one-step mode

(ITASK ¼ 2), with C0 interpolation to calculate the solution at intervals of 0.02 using D02XJF externally.
D02NBY is used for MONITR.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D02NGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, NEQMAX, NRW, NINF, NWKJAC, MAXORD, NY2DIM,

+ MAXSTP, MXHNIL
PARAMETER (NEQ=3,NEQMAX=NEQ,NRW=50+4*NEQMAX,NINF=23,

+ NWKJAC=NEQMAX*(NEQMAX+1),MAXORD=5,
+ NY2DIM=MAXORD+1,MAXSTP=200,MXHNIL=5)
real H0, HMAX, HMIN, TCRIT
PARAMETER (H0=0.0e0,HMAX=10.0e0,HMIN=1.0e-10,TCRIT=0.0e0)
LOGICAL PETZLD
PARAMETER (PETZLD=.FALSE.)

* .. Local Scalars ..
real H, HU, T, TCUR, TOLSF, TOUT, XOUT
INTEGER I, IFAIL, IMXER, IOUT, ITASK, ITOL, ITRACE,

+ NITER, NJE, NQ, NQU, NRE, NST
* .. Local Arrays ..

real ATOL(NEQMAX), CONST(6), RTOL(NEQMAX), RWORK(NRW),
+ SOL(NEQMAX), WKJAC(NWKJAC), Y(NEQMAX),
+ YDOT(NEQMAX), YSAVE(NEQMAX,NY2DIM)
INTEGER INFORM(NINF)
LOGICAL ALGEQU(NEQMAX), LDERIV(2)

* .. External Subroutines ..
EXTERNAL D02NBY, D02NGF, D02NGZ, D02NSF, D02NVF, D02NYF,

+ D02XJF, RESID, X04ABF
* .. Intrinsic Functions ..

INTRINSIC real
* .. Executable Statements ..

WRITE (NOUT,*) ’D02NGF Example Program Results’
CALL X04ABF(1,NOUT)

*
* Integrate to TOUT by overshooting TOUT in one step mode (ITASK=2)

D02 – Ordinary Differential Equations D02NGF

[NP3546/20A] D02NGF.11



* using B.D.F formulae with a functional iteration method.
* Default values for the array CONST are used. Employ vector
* tolerances and the Jacobian is evaluated internally, if necessary.
* MONITR subroutine replaced by NAG dummy routine D02NBY.
* Interpolation outside D02NGF using D02XJF.
*

T = 0.0e0
TOUT = 0.1e0
ITASK = 2
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
LDERIV(1) = .FALSE.
LDERIV(2) = .FALSE.
ITOL = 4
RTOL(1) = 1.0e-4
RTOL(2) = 1.0e-3
RTOL(3) = 1.0e-4
ATOL(1) = 1.0e-7
ATOL(2) = 1.0e-8
ATOL(3) = 1.0e-7
DO 20 I = 1, 6

CONST(I) = 0.0e0
20 CONTINUE

IFAIL = 0
*

CALL D02NVF(NEQMAX,NY2DIM,MAXORD,’Functional-iteration’,PETZLD,
+ CONST,TCRIT,HMIN,HMAX,H0,MAXSTP,MXHNIL,’Average-L2’,
+ RWORK,IFAIL)

* Linear algebra setup required (in case functional iteration
* encounters any difficulty).

CALL D02NSF(NEQ,NEQMAX,’Numerical’,NWKJAC,RWORK,IFAIL)
*

XOUT = 0.02e0
IOUT = 1

*
WRITE (NOUT,*)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
WRITE (NOUT,99999) T, (Y(I),I=1,NEQ)

*
* Soft fail and error messages only

ITRACE = 0
40 IFAIL = 1

*
CALL D02NGF(NEQ,NEQMAX,T,TOUT,Y,YDOT,RWORK,RTOL,ATOL,ITOL,INFORM,

+ RESID,YSAVE,NY2DIM,D02NGZ,WKJAC,NWKJAC,D02NBY,LDERIV,
+ ITASK,ITRACE,IFAIL)

*
IF (IFAIL.EQ.0) THEN

*
CALL D02NYF(NEQ,NEQMAX,HU,H,TCUR,TOLSF,RWORK,NST,NRE,NJE,NQU,

+ NQ,NITER,IMXER,ALGEQU,INFORM,IFAIL)
*

60 CONTINUE
IF (TCUR-HU.LT.XOUT .AND. XOUT.LE.TCUR) THEN

IFAIL = 0
* C0 interpolation

CALL D02XJF(XOUT,SOL,NEQ,YSAVE,NEQMAX,NY2DIM,NEQ,TCUR,NQU,
+ HU,H,IFAIL)

*
WRITE (NOUT,99999) XOUT, (SOL(I),I=1,NEQ)
IOUT = IOUT + 1
XOUT = real(IOUT)*0.02e0
IF (IOUT.LT.6) THEN

GO TO 60
ELSE

WRITE (NOUT,*)
WRITE (NOUT,99997) ’ HUSED = ’, HU, ’ HNEXT = ’, H,

+ ’ TCUR = ’, TCUR
WRITE (NOUT,99996) ’ NST = ’, NST, ’ NRE = ’, NRE,

+ ’ NJE = ’, NJE

D02NGF NAG Fortran Library Manual

D02NGF.12 [NP3546/20A]



WRITE (NOUT,99996) ’ NQU = ’, NQU, ’ NQ = ’, NQ,
+ ’ NITER = ’, NITER

WRITE (NOUT,99995) ’ Max err comp = ’, IMXER
END IF

ELSE
GO TO 40

END IF
ELSE

WRITE (NOUT,*)
WRITE (NOUT,99998) ’Exit D02NGF with IFAIL = ’, IFAIL,

+ ’ and T = ’, T
END IF
STOP

*
99999 FORMAT (1X,F8.3,3(F13.5,2X))
99998 FORMAT (1X,A,I2,A,e12.5)
99997 FORMAT (1X,A,e12.5,A,e12.5,A,e12.5)
99996 FORMAT (1X,A,I6,A,I6,A,I6)
99995 FORMAT (1X,A,I4)

END
*

SUBROUTINE RESID(NEQ,T,Y,YDOT,R,IRES)
* .. Scalar Arguments ..

real T
INTEGER IRES, NEQ

* .. Array Arguments ..
real R(NEQ), Y(NEQ), YDOT(NEQ)

* .. Executable Statements ..
R(1) = -YDOT(1)
R(2) = -YDOT(2)
R(3) = -YDOT(3)

*
IF (IRES.EQ.1) THEN

R(1) = -0.04e0*Y(1) + 1.0e4*Y(2)*Y(3) + R(1)
R(2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) - 3.0e7*Y(2)*Y(2) + R(2)
R(3) = 3.0e7*Y(2)*Y(2) + R(3)

END IF
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D02NGF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
0.020 0.99920 0.00004 0.00076
0.040 0.99841 0.00004 0.00155
0.060 0.99763 0.00004 0.00234
0.080 0.99685 0.00004 0.00311
0.100 0.99608 0.00004 0.00389

HUSED = 0.38401E-03 HNEXT = 0.38401E-03 TCUR = 0.10026E+00
NST = 245 NRE = 815 NJE = 0
NQU = 1 NQ = 1 NITER = 0
Max err comp = 2

D02 – Ordinary Differential Equations D02NGF

[NP3546/20A] D02NGF.13 (last)


	D02NGF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	NEQ
	NEQMAX
	T
	TOUT
	Y
	YDOT
	RWORK
	RTOL
	ATOL
	ITOL
	INFORM
	RESID
	NEQ
	T
	Y
	YDOT
	R
	IRES

	YSAVE
	NY2DIM
	JAC
	NEQ
	T
	Y
	YDOT
	H
	D
	P

	WKJAC
	NWKJAC
	MONITR
	NEQ
	NEQMAX
	T
	HLAST
	HNEXT
	Y
	YDOT
	YSAVE
	R
	ACOR
	IMON
	INLN
	HMIN
	HMAX
	NQU

	LDERIV
	ITASK
	ITRACE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = 10
	IFAIL = 11
	IFAIL = 12
	IFAIL = 13
	IFAIL = 14
	IFAIL = 15

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



