
NAG Fortran Library Routine Document

D02LAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02LAF is a routine for integrating a non-stiff system of second-order ordinary differential equations using
Runge–Kutta–Nystrom techniques.

2 Specification

SUBROUTINE D02LAF(FCN, NEQ, T, TEND, Y, YP, YDP, RWORK, LRWORK, IFAIL)

INTEGER NEQ, LRWORK, IFAIL
real T, TEND, Y(NEQ), YP(NEQ), YDP(NEQ), RWORK(LRWORK)
EXTERNAL FCN

3 Description

Given the initial values x; y1; y2; . . . ; yNEQ; y
0
1; y

0
2; . . . ; y

0
NEQ the routine integrates a non-stiff system of

second-order differential equations of the type

y00i ¼ fiðx; y1; y2; . . . ; yNEQÞ; i ¼ 1; 2; . . . ;NEQ;

from x ¼ T to x ¼ TEND using a Runge–Kutta–Nystrom formula pair. The system is defined by a
subroutine FCN supplied by the user, which evaluates fi in terms of x and y1; y2; . . . ; yNEQ, where

y1; y2; . . . ; yNEQ are supplied at x.

There are two Runge–Kutta–Nystrom formula pairs implemented in this routine. The lower order method
is intended for users with moderate accuracy requirements and may be used in conjunction with the
interpolation routine D02LZF to produce solutions and derivatives at user-specified points. The higher
order method is intended for users with high accuracy requirements.

In one-step mode the routine returns approximations to the solution, derivative and fi at each integration
point. In interval mode these values are returned at the end of the integration range. The user selects the
order of the method, the mode of operation, the error control and various optional inputs by a prior call of
D02LXF.

For a description of the Runge–Kutta–Nystrom formula pairs see Dormand et al. (1986a) and Dormand et
al. (1986b) and for a description of their practical implementation see Brankin et al. (1989).

4 References

Brankin R W, Dormand J R, Gladwell I, Prince P J and Seward W L (1989) Algorithm 670: A Runge–
Kutta–Nystrom Code ACM Trans. Math. Software 15 31–40

Dormand J R, El-Mikkawy M E A and Prince P J (1986a) Families of Runge–Kutta–Nystrom formulae
Mathematical Report TPMR 86-1 Teesside Polytechnic

Dormand J R, El-Mikkawy M E A and Prince P J (1986b) High order embedded Runge–Kutta–Nystrom
formulae Mathematical Report TPMR 86-2 Teesside Polytechnic

5 Parameters

1: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (that is the second derivatives y00i) for given values of its
arguments x, y1; y2; . . . ; yNEQ.

D02 – Ordinary Differential Equations D02LAF

[NP3546/20A] D02LAF.1

Its specification is:

SUBROUTINE FCN(NEQ, T, Y, F)

INTEGER NEQ
real T, Y(NEQ), F(NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations.

2: T – real Input

On entry: the value of the argument x.

3: Y(NEQ) – real array Input

On entry: the value of the argument yi, for i ¼ 1; 2; . . . ;NEQ.

4: F(NEQ) – real array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ;NEQ.

FCN must be declared as EXTERNAL in the (sub)program from which D02LAF is called.
Parameters denoted as Input must not be changed by this procedure.

2: NEQ – INTEGER Input

On entry: the number of second-order ordinary differential equations to be solved by D02LAF. It
must contain the same value as the parameter NEQ used in a prior call of D02LXF.

Constraint: NEQ � 1.

3: T – real Input/Output

On entry: the initial value of the independent variable x.

On exit: the value of the independent variable, which is usually TEND, unless an error has occurred
or the code is operating in one-step mode. If the integration is to be continued, possibly with a new
value for TEND, T must not be changed.

Constraint: T 6¼ TEND.

4: TEND – real Input

On entry: the end-point of the range of integration. If TEND < T on initial entry, integration will
proceed in the negative direction. TEND may be reset, in the direction of integration, before any
continuation call.

5: Y(NEQ) – real array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yNEQ.

On exit: the computed values of the solution at the exit value of T. If the integration is to be
continued, possibly with a new value for TEND, these values must not be changed.

6: YP(NEQ) – real array Input/Output

On entry: the initial values of the derivatives y01; y
0
2; . . . ; y

0
NEQ.

On exit: the computed values of the derivatives at the exit value of T. If the integration is to be
continued, possibly with a new value for TEND, these values must not be changed.

D02LAF NAG Fortran Library Manual

D02LAF.2 [NP3546/20A]

7: YDP(NEQ) – real array Input/Output

On entry: YDP must be unchanged from a previous call to D02LAF.

On exit: the computed values of the second derivative at the exit value of T, unless illegal input is
detected, in which case the elements of YDP may not have been initialised. If the integration is to
be continued, possibly with a new value for TEND, these values must not be changed.

8: RWORK(LRWORK) – real array Workspace

This must be the same parameter RWORK as supplied to D02LXF. It is used to pass information
from D02LXF to D02LAF, and from D02LAF to both D02LYF and D02LZF. Therefore the
contents of this array must not be changed before the call to D02LAF or calling either of the
routines D02LYF and D02LZF.

9: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which D02LAF
is called.

This must be the same parameter LRWORK as supplied to D02LXF.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Illegal input detected, i.e., one of the following conditions:

on any call, T ¼ TEND, or the value of NEQ or LRWORK has been altered;

on a continuation call, the direction of integration has been changed;

D02LXF had not been called previously, or the previous call of D02LXF resulted in an error
exit.

This error exit can be caused if elements of RWORK have been overwritten.

IFAIL ¼ 2

The maximum number of steps has been attempted. (See parameter MAXSTP in D02LXF.) If
integration is to be continued then the user need only reset IFAIL and call the routine again and a
further MAXSTP steps will be attempted.

IFAIL ¼ 3

In order to satisfy the error requirements, the step size needed is too small for the machine
precision being used.

D02 – Ordinary Differential Equations D02LAF

[NP3546/20A] D02LAF.3

IFAIL ¼ 4

The code has detected two successive error exits at the current value of x and cannot proceed.
Check all input variables.

IFAIL ¼ 5

The code has detected inefficient use of the integration method. The step size has been reduced by
a significant amount too often in order to hit the output points specified by TEND. (Of the last 100
or more successful steps more than 10% are steps with sizes that have had to be reduced by a factor
of greater than a half.)

7 Accuracy

The accuracy of integration is determined by the parameters TOL, THRES and THRESP in a prior call of
D02LXF. Note that only the local error at each step is controlled by these parameters. The error estimates
obtained are not strict bounds, but they are usually reliable over one step. Over a number of steps the
overall error may accumulate in various ways, depending on the system. The code is designed so that a
reduction in TOL should lead to an approximately proportional reduction in the error. The user is strongly
recommended to call D02LAF with more than one value for TOL and compare the results obtained to
estimate their accuracy. The accuracy obtained depends on the type of error test used. If the solution
oscillates around zero a relative error test should be avoided, whereas if the solution is exponentially
increasing an absolute error test should not be used. For a description of the error test see the
specifications of the parameters TOL, THRES and THRESP in routine document D02LXF.

8 Further Comments

If the routine fails with IFAIL ¼ 3 then the value of TOL may be so small that a solution cannot be
obtained, in which case the routine should be called again with a larger value for TOL. If the accuracy
requested is really needed then the user should consider whether there is a more fundamental difficulty.
For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude. D02LAF
could be used in one-step mode to monitor the size of the solution with the aim of trapping the
solution before the singularity. In any case numerical integration cannot be continued through a
singularity, and analytical treatment may be necessary;

(b) if the solution contains fast oscillatory components, the routine will require a very small step size to
preserve stability. This will usually be exhibited by excessive computing time and sometimes an error
exit with IFAIL ¼ 3. The Runge–Kutta–Nystrom methods are not efficient in such cases and the user
should consider reposing his problem as a system of first-order ordinary differential equations and
then using a routine from Chapter D02M/N with the Blend formulae (see D02NWF).

D02LAF can be used for producing results at short intervals (for example, for tabulation), in two ways.
By far the less efficient is to call D02LAF successively over short intervals, tþ ði� 1Þ � h to tþ i� h,
although this is the only way if the higher order method has been selected and precisely not what it is
intended for. A more efficient way, only for use when the lower order method has been selected, is to use
D02LAF in one-step mode. The output values of parameters Y, YP, YDP, T and RWORK are set correctly
for a call of D02LZF to compute the solution and derivative at the required points.

9 Example

We solve the following system (the two body problem)

y001 ¼ �y1= y21 þ y22
� �3=2

y002 ¼ �y2= y21 þ y22
� �3=2

over the range [0,20] with initial conditions y1 ¼ 1:0� �, y2 ¼ 0:0, y01 ¼ 0:0 and y02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

1� �

� �s
where

�, the eccentricity, is 0.5. The system is solved using the lower order method with relative local error

D02LAF NAG Fortran Library Manual

D02LAF.4 [NP3546/20A]

tolerances 1:0E�4 and 1:0E�5 and default threshold tolerances. D02LAF is used in one-step mode
(ONESTP ¼ :TRUE:) and D02LZF provides solution values at intervals of 2.0.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D02LAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, LRWORK, NWANT
PARAMETER (NEQ=2,LRWORK=16+20*NEQ,NWANT=NEQ)

* .. Local Scalars ..
real ECC, H, HNEXT, HSTART, HUSED, T, TEND, TINC,

+ TNEXT, TOL, TSTART, Y1, Y2, YP1, YP2
INTEGER IFAIL, ITOL, K, MAXSTP, NATT, NFAIL, NSUCC
LOGICAL HIGH, ONESTP, START

* .. Local Arrays ..
real RWORK(LRWORK), THRES(NEQ), THRESP(NEQ), Y(NEQ),

+ YDP(NEQ), YP(NEQ), YPWANT(NWANT), YWANT(NWANT)
* .. External Subroutines ..

EXTERNAL D02LAF, D02LXF, D02LYF, D02LZF, FCN2BD
* .. Intrinsic Functions ..

INTRINSIC SQRT
* .. Executable Statements ..

WRITE (NOUT,*) ’D02LAF Example Program Results’
HIGH = .FALSE.
ONESTP = .TRUE.
TINC = 2.0e0

*
* Initial conditions
*

TSTART = 0.0e0
ECC = 0.5e0
Y1 = 1.0e0 - ECC
Y2 = 0.0e0
YP1 = 0.0e0
YP2 = SQRT((1.0e0+ECC)/(1.0e0-ECC))
TEND = 20.0e0

*
DO 60 ITOL = 4, 5

TOL = 10.0e0**(-ITOL)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Calculation with TOL = ’, TOL
WRITE (NOUT,*)
WRITE (NOUT,*) ’ T Y(1) Y(2)’

*
* Call D02LXF with default THRES,THRESP,MAXSTP and H
*

THRES(1) = 0.0e0
THRESP(1) = 0.0e0
H = 0.0e0
MAXSTP = 0
START = .TRUE.
IFAIL = 0

*
CALL D02LXF(NEQ,H,TOL,THRES,THRESP,MAXSTP,START,ONESTP,HIGH,

+ RWORK,LRWORK,IFAIL)
*
* Set initial values
*

Y(1) = Y1
Y(2) = Y2
YP(1) = YP1
YP(2) = YP2
T = TSTART

D02 – Ordinary Differential Equations D02LAF

[NP3546/20A] D02LAF.5

TNEXT = T + TINC
WRITE (NOUT,99998) T, (Y(K),K=1,NEQ)

*
* Loop point for onestep mode
*

20 IFAIL = -1
*

CALL D02LAF(FCN2BD,NEQ,T,TEND,Y,YP,YDP,RWORK,LRWORK,IFAIL)
*

IF (IFAIL.GT.0) THEN
WRITE (NOUT,*)
WRITE (NOUT,99997) ’D02LAF returned with IFAIL = ’, IFAIL,

+ ’ at T = ’, T
STOP

END IF
*
* Loop point for interpolation
*

40 IF (TNEXT.LE.T) THEN
IFAIL = 0

*
CALL D02LZF(NEQ,T,Y,YP,NEQ,TNEXT,YWANT,YPWANT,RWORK,LRWORK,

+ IFAIL)
*

WRITE (NOUT,99998) TNEXT, (YWANT(K),K=1,NEQ)
TNEXT = TNEXT + TINC
GO TO 40

END IF
*

IF (T.LT.TEND) GO TO 20
*

IFAIL = 0
*

CALL D02LYF(NEQ,HNEXT,HUSED,HSTART,NSUCC,NFAIL,NATT,THRES,
+ THRESP,RWORK,LRWORK,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99996) ’ Number of successful steps = ’, NSUCC
WRITE (NOUT,99996) ’ Number of failed steps = ’, NFAIL

60 CONTINUE
STOP

*
99999 FORMAT (1X,A,1P,e9.1)
99998 FORMAT (1X,F5.1,2(2X,F9.5))
99997 FORMAT (1X,A,I2,A,1P,e10.3)
99996 FORMAT (1X,A,I5)

END
*

SUBROUTINE FCN2BD(NEQ,T,Y,YDP)
*
* Derivatives for two body problem in y’’ = f(t,y) form
*
* .. Scalar Arguments ..

real T
INTEGER NEQ

* .. Array Arguments ..
real Y(NEQ), YDP(NEQ)

* .. Local Scalars ..
real R

* .. Intrinsic Functions ..
INTRINSIC SQRT

* .. Executable Statements ..
R = SQRT(Y(1)**2+Y(2)**2)**3
YDP(1) = -Y(1)/R
YDP(2) = -Y(2)/R
RETURN
END

D02LAF NAG Fortran Library Manual

D02LAF.6 [NP3546/20A]

9.2 Program Data

None.

9.3 Program Results

D02LAF Example Program Results

Calculation with TOL = 1.0E-04

T Y(1) Y(2)
0.0 0.50000 0.00000
2.0 -1.20573 0.61357
4.0 -1.33476 -0.47685
6.0 0.35748 -0.44558
8.0 -1.03762 0.73022

10.0 -1.42617 -0.32658
12.0 0.05515 -0.72032
14.0 -0.82880 0.81788
16.0 -1.48103 -0.16788
18.0 -0.26719 -0.84223
20.0 -0.57803 0.86339

Number of successful steps = 108
Number of failed steps = 16

Calculation with TOL = 1.0E-05

T Y(1) Y(2)
0.0 0.50000 0.00000
2.0 -1.20573 0.61357
4.0 -1.33476 -0.47685
6.0 0.35748 -0.44558
8.0 -1.03762 0.73022

10.0 -1.42617 -0.32658
12.0 0.05516 -0.72031
14.0 -0.82880 0.81787
16.0 -1.48103 -0.16789
18.0 -0.26718 -0.84223
20.0 -0.57804 0.86338

Number of successful steps = 169
Number of failed steps = 15

D02 – Ordinary Differential Equations D02LAF

[NP3546/20A] D02LAF.7 (last)

	D02LAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	FCN
	NEQ
	T
	Y
	F

	NEQ
	T
	TEND
	Y
	YP
	YDP
	RWORK
	LRWORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	Fortran Library, Mark 21
	Foreword
	Introduction
	Essential Introduction
	Mark 21 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

