NAG Fortran Library Routine Document C06POF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. ## 1 Purpose C06PQF computes the discrete Fourier transforms of m sequences, each containing n real data values or a Hermitian complex sequence stored columnwise in a complex storage format. # 2 Specification SUBROUTINE CO6PQF(DIRECT, N, M, X, WORK, IFAIL) INTEGER N, M, IFAIL real CHARACTER*1 DIRECT # 3 Description Given m sequences of n real data values x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier transforms of all the sequences defined by $$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j^p \times \exp\biggl(-i\frac{2\pi jk}{n}\biggr), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$ The transformed values \hat{z}_k^p are complex, but for each value of p the \hat{z}_k^p form a Hermitian sequence (i.e., \hat{z}_{n-k}^p is the complex conjugate of \hat{z}_k^p), so they are completely determined by mn real numbers (since \hat{z}_0^p is real, as is $\hat{z}_{n/2}^p$ for n even). Alternatively, given m Hermitian sequences of n complex data values z_j^p , this routine simultaneously calculates their inverse (**backward**) discrete Fourier transforms defined by $$\hat{x}_k^p = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_j^p \times \exp\left(i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$ The transformed values \hat{x}_k^p are real. (Note the scale factor $\frac{1}{\sqrt{n}}$ in the above definition.) A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data. The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham (1974)) known as the Stockham self-sorting algorithm, which is described in Temperton (1983a). Special coding is provided for the factors 2, 3, 4 and 5. ### 4 References Brigham E O (1974) The Fast Fourier Transform Prentice-Hall Temperton C (1983a) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350 [NP3546/20A] C06PQF.1 #### 5 Parameters #### 1: DIRECT – CHARACTER*1 Input Input On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the **B**ackward transform is to be computed then DIRECT must be set equal to 'B'. Constraint: DIRECT = 'F' or 'B'. 2: N – INTEGER 3: M – INTEGER Input #### 4: X((N+2)*M) - real array Input/Output On entry: the data must be stored in X as if in a two-dimensional array of dimension (0: N+1, 1: M); each of the m sequences is stored in a **column** of the array. In other words, if the data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n-1$, then: if DIRECT is set to 'F', X((p-1)*(N+2)+j) must contain x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$; if DIRECT is set to 'B', X((p-1)*(N+2)+2*k) and X((p-1)*(N+2)+2*k+1) must contain the real and imaginary parts respectively of \hat{z}_k^p , for $k=0,1,\ldots,n/2$ and $p=1,2,\ldots,m$. (Note that for the sequence \hat{z}_k^p to be Hermitian, the imaginary part of \hat{z}_0^p , and of $\hat{z}_{n/2}^p$ for n even, must be zero.) On exit: if DIRECT is set to 'F' and X is declared with bounds (0: N+1, 1: M) then X(2*k, p) and X(2*k+1, p) will contain the real and imaginary parts respectively of \hat{z}_k^p , for $k=0,1,\ldots,n/2$ and $p=1,2,\ldots,m$; if DIRECT is set to 'B' and X is declared with bounds (0: N+1, 1: M) then X(j, p) will contain x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$. 5: WORK((M+2)*N+15) - real array Workspace #### 6: IFAIL – INTEGER Input/Output On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details. On exit: IFAIL = 0 unless the routine detects an error (see Section 6). For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit. # 6 Error Indicators and Warnings If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF). Errors or warnings detected by the routine: C06PQF.2 [NP3546/20A] ``` IFAIL = 1IFAIL = 2 ``` IFAIL = 3IFAIL = 4 # 7 Accuracy Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical). #### **8** Further Comments The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors. # 9 Example This program reads in sequences of real data values and prints their discrete Fourier transforms (as computed by C06PQF with DIRECT set to 'F'), after expanding them from complex Hermitian form into a full complex sequences. Inverse transforms are then calculated by calling C06PQF with DIRECT set to 'B' showing that the original sequences are restored. ### 9.1 Program Text **Note:** the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations. ``` CO6PQF Example Program Text. Mark 19 Release. NAG Copyright 1999. .. Parameters .. INTEGER NIN, NOUT (NIN=5,NOUT=6) PARAMETER INTEGER MMAX, NMAX PARAMETER (MMAX=5,NMAX=20) .. Local Scalars .. INTEGER I, IFAIL, J, M, N .. Local Arrays .. WORK ((MMAX+2)*NMAX+15), X((NMAX+2)*MMAX) real .. External Subroutines .. EXTERNAL C06POF .. Executable Statements .. WRITE (NOUT,*) 'CO6PQF Example Program Results' Skip heading in data Ûle READ (NIN, *) 20 CONTINUE READ (NIN, \star, END=140) M, N IF (M.LE.MMAX .AND. N.LE.NMAX) THEN DO 40 J = 1, M*(N+2), N + 2 READ (NIN, *) (X(J+I), I=0, N-1) 40 CONTINUE WRITE (NOUT, *) WRITE (NOUT,*) 'Original data values' WRITE (NOUT, *) DO 60 J = 1, M*(N+2), N + 2 WRITE (NOUT, 99999) ' ', (X(J+I), I=0, N-1) 60 CONTINUE IFAIL = 0 ``` [NP3546/20A] C06PQF.3 ``` CALL CO6PQF('F',N,M,X,WORK,IFAIL) WRITE (NOUT, *) WRITE (NOUT, *) 'Discrete Fourier transforms in complex Hermitian format' DO 80 J = 1, M*(N+2), N + 2 WRITE (NOUT, *) WRITE (NOUT,99999) 'Real ', (X(J+2*I),I=0,N/2) WRITE (NOUT,99999) 'Imag ', (X(J+2*I+1),I=0,N/2) 80 CONTINUE WRITE (NOUT, *) WRITE (NOUT,*) 'Fourier transforms in full complex form' DO 100 J = 1, M*(N+2), N + 2 WRITE (NOUT,*) WRITE (NOUT,99999) 'Real', (X(J+2*I),I=0,N/2), (X(J+2*(N-I)),I=N/2+1,N-1) WRITE (NOUT,99999) 'Imag', (X(J+2*I+1),I=0,N/2), (-X(J+2*(N-I)+1),I=N/2+1,N-1) 100 CONTINUE CALL CO6PQF('B',N,M,X,WORK,IFAIL) WRITE (NOUT, *) WRITE (NOUT,*) 'Original data as restored by inverse transform' WRITE (NOUT, *) DO 120 J = 1, M*(N+2), N + 2 WRITE (NOUT, 99999) ' ', (X(J+I), I=0, N-1) 120 CONTINUE GO TO 20 ELSE WRITE (NOUT,*) 'Invalid value of M or N' END IF 140 CONTINUE STOP 99999 FORMAT (1x,A,9(:1x,F10.4)) END 9.2 Program Data CO6PQF Example Program Data ``` ``` 3 6 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.8723 0.1181 0.7255 0.8638 0.6037 0.6430 0.0428 0.5417 0.2983 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 ``` C06PQF.4 [NP3546/20A] # 9.3 Program Results CO6PQF Example Program Results | Original data values | | | | | | | | |---|----------------------------|--------------------|-------------------|-------------------|----------------------------|----------------------------|--| | | 0.3854
0.5417
0.9172 | 0.2983 | 0.1181 | 0.7255 | 0.6362
0.8638
0.0428 | 0.1424
0.8723
0.4815 | | | Discrete Fourier transforms in complex Hermitian format | | | | | | | | | Real
Imag | 1.0737
0.0000 | -0.1041
-0.0044 | | | | | | | Real
Imag | 1.3961
0.0000 | -0.0365
0.4666 | 0.0780
-0.0607 | -0.1521
0.0000 | | | | | Real
Imag | 1.1237
0.0000 | | | | | | | | Fourier transforms in full complex form | | | | | | | | | Real
Imag | 1.0737
0.0000 | -0.1041
-0.0044 | | | 0.1126
0.3738 | -0.1041
0.0044 | | | Real
Imag | 1.3961
0.0000 | -0.0365
0.4666 | 0.0780
-0.0607 | -0.1521
0.0000 | 0.0780
0.0607 | -0.0365
-0.4666 | | | Real
Imag | 1.1237
0.0000 | | | | 0.3936
-0.3458 | 0.0914
0.0508 | | | Original data as restored by inverse transform | | | | | | | | | | 0.3854
0.5417
0.9172 | | | | 0.6362
0.8638
0.0428 | 0.1424
0.8723
0.4815 | | [NP3546/20A] C06PQF.5 (last)