NAG Fortran Library Routine Document

C06FJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

C06FJF computes the multi-dimensional discrete Fourier transform of a multivariate sequence of complex data values

2 Specification

```
SUBROUTINE CO6FJF(NDIM, ND, N, X, Y, WORK, LWORK, IFAIL)
INTEGER NDIM, ND(NDIM), N, LWORK, IFAIL

real X(N), Y(N), WORK(LWORK)
```

3 Description

This routine computes the multi-dimensional discrete Fourier transform of a multi-dimensional sequence of complex data values $z_{j_1j_2...j_m}$, where $j_1=0,1,\ldots,n_1-1,\ j_2=0,1,\ldots,n_2-1$, and so on. Thus the individual dimensions are n_1,n_2,\ldots,n_m , and the total number of data values $n=n_1\times n_2\times\cdots\times n_m$.

The discrete Fourier transform is here defined (e.g., for m = 2) by:

$$\hat{z}_{k_1,k_2} = \frac{1}{\sqrt{n}} \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} z_{j_1j_2} \times \exp\left(-2\pi i \left(\frac{j_1k_1}{n_1} + \frac{j_2k_2}{n_2}\right)\right),$$

where $k_1 = 0, 1, \dots, n_1 - 1, k_2 = 0, 1, \dots, n_2 - 1.$

The extension to higher dimensions is obvious. (Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.)

To compute the inverse discrete Fourier transform, defined with $\exp(+2\pi i(\ldots))$ in the above formula instead of $\exp(-2\pi i(\ldots))$, this routine should be preceded and followed by calls of C06GCF to form the complex conjugates of the data values and the transform.

The data values must be supplied in a pair of one-dimensional arrays (real and imaginary parts separately), in accordance with the Fortran convention for storing multi-dimensional data (i.e., with the first subscript j_1 varying most rapidly).

This routine calls C06FCF to perform one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974), and hence there are some restrictions on the values of the n_i (see Section 5.)

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: NDIM – INTEGER Input

On entry: the number of dimensions (or variables), m, in the multivariate data.

Constraint: $NDIM \ge 1$.

[NP3546/20A] C06FJF.1

2: ND(NDIM) – INTEGER array

Input

On entry: ND(i) must contain n_i (the dimension of the *i*th variable), for i = 1, 2, ..., m. The largest prime factor of each ND(i) must not exceed 19, and the total number of prime factors of ND(i), counting repetitions, must not exceed 20.

Constraint: $ND(i) \ge 1$.

3: N – INTEGER Input

On entry: the total number of data values, n.

Constraint: $N = ND(1) \times ND(2) \times \cdots \times ND(NDIM)$.

4: X(N) - real array

Input/Output

On entry: $X(1+j_1+n_1j_2+n_1n_2j_3+\ldots)$ must contain the real part of the complex data value $z_{j_1j_2...j_m}$, for $0 \le j_1 \le n_1-1, 0 \le j_2 \le n_2-1,\ldots$; i.e., the values are stored in consecutive elements of the array according to the Fortran convention for storing multi-dimensional arrays.

On exit: the real parts of the corresponding elements of the computed transform.

5: Y(N) - real array

Input/Output

On entry: the imaginary parts of the complex data values, stored in the same way as the real parts in the array X.

On exit: the imaginary parts of the corresponding elements of the computed transform.

6: WORK(LWORK) - *real* array

Workspace

7: LWORK – INTEGER

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06FJF is called.

Constraint: LWORK $\geq 3 \times \max\{ND(i)\}$.

8: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

NDIM < 1.

IFAIL = 2

$$N \neq ND(1) \times ND(2) \times \cdots \times ND(NDIM)$$
.

 $IFAIL = 10 \times L + 1$

At least one of the prime factors of ND(L) is greater than 19.

C06FJF.2 [NP3546/20A]

```
IFAIL = 10 \times L + 2

ND(L) has more than 20 prime factors.

IFAIL = 10 \times L + 3

ND(L) < 1.

IFAIL = 10 \times L + 4

LWORK < 3 \times ND(L).
```

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of the individual dimensions ND(i). The routine is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

9 Example

This program reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

9.1 Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6FJF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    NDIM, NMAX, LWORK
                     (NDIM=2,NMAX=96,LWORK=96)
  PARAMETER
   INTEGER
                    NIN, NOUT
  PARAMETER
                    (NIN=5, NOUT=6)
   .. Local Scalars .
   INTEGER
                    IFAIL, N
   .. Local Arrays ..
   real
                     WORK(LWORK), X(NMAX), Y(NMAX)
   INTEGER
                    ND(NDIM)
   .. External Subroutines ..
                    CO6FJF, CO6GCF, READXY, WRITXY
  EXTERNAL
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6FJF Example Program Results'
   Skip heading in data Ûle
   READ (NIN, *)
20 READ (NIN, *, END=40) ND(1), ND(2)
   N = ND(1)*ND(2)
   IF (N.GE.1 .AND. N.LE.NMAX) THEN
      CALL READXY(NIN, X, Y, ND(1), ND(2))
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Original data values'
      CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
      IFAIL = 0
      Compute transform
      CALL CO6FJF(NDIM, ND, N, X, Y, WORK, LWORK, IFAIL)
      WRITE (NOUT, *)
```

[NP3546/20A] C06FJF.3

```
WRITE (NOUT,*) 'Components of discrete Fourier transform'
         CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
         Compute inverse transform
         CALL CO6GCF(Y,N,IFAIL)
         CALL CO6FJF(NDIM, ND, N, X, Y, WORK, LWORK, IFAIL)
         CALL CO6GCF(Y,N,IFAIL)
         WRITE (NOUT, *)
         WRITE (NOUT, *)
          'Original sequence as restored by inverse transform'
         CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
         GO TO 20
      ELSE
         WRITE (NOUT, *) 'Invalid value of N'
      END IF
   40 STOP
      END
      SUBROUTINE READXY (NIN, X, Y, N1, N2)
      Read 2-dimensional complex data
      .. Scalar Arguments ..
                       N1, N2, NIN
      INTEGER
      .. Array Arguments ..
      real
                        X(N1,N2), Y(N1,N2)
      .. Local Scalars ..
      INTEGER
                        I, J
      .. Executable Statements ..
      DO 20 I = 1, N1
         READ (NIN,*) (X(I,J),J=1,N2)
         READ (NIN,*) (Y(I,J),J=1,N2)
   20 CONTINUE
      RETURN
      END
      SUBROUTINE WRITXY (NOUT, X, Y, N1, N2)
      Print 2-dimensional complex data
      .. Scalar Arguments ..
     INTEGER
                        N1, N2, NOUT
      .. Array Arguments ..
                        X(N1,N2), Y(N1,N2)
      real
      .. Local Scalars ..
      INTEGER
                        I, J
      .. Executable Statements ..
      DO 20 I = 1, N1
         WRITE (NOUT, *)
         WRITE (NOUT,99999) 'Real ', (X(I,J),J=1,N2)
         WRITE (NOUT,99999) 'Imag ', (Y(I,J),J=1,N2)
   20 CONTINUE
      RETURN
99999 FORMAT (1X,A,7F10.3,/(6X,7F10.3))
      END
    Program Data
9.2
CO6FJF Example Program Data
    1.000
              0.999
                        0.987
                                  0.936
                                            0.802
                                 -0.352
                       -0.159
     0.000
              -0.040
                                            -0.597
    0.994
              0.989
                        0.963
                                  0.891
                                            0.731
    -0.111
             -0.151
                       -0.268
                                 -0.454
                                            -0.682
    0.903
              0.885
                        0.823
                                  0.694
                                            0.467
              -0.466
                        -0.568
    -0.430
                                 -0.720
                                            -0.884
```

9.3 Program Results

```
CO6FJF Example Program Results
Original data values
```

C06FJF.4 [NP3546/20A]

		0.999 -0.040				
		0.989 -0.151				
		0.885 -0.466				
Components of discrete Fourier transform						
		0.481 -0.091			-0.419 0.415	
		0.055 0.032		-0.022 0.036		
		-0.037 0.058				
Original	Original sequence as restored by inverse transform					
		0.999 -0.040				
		0.989 -0.151				
		0.885 -0.466				

[NP3546/20A] C06FJF.5 (last)