* E04LBF Example Program Text * Mark 14 Revised. NAG Copyright 1989. * .. Parameters .. INTEGER N, LH, LIW, LW PARAMETER (N=4,LH=N*(N-1)/2,LIW=2,LW=7*N+N*(N-1)/2) INTEGER NOUT PARAMETER (NOUT=6) * .. Local Scalars .. DOUBLE PRECISION ETA, F, STEPMX, XTOL INTEGER IBOUND, IFAIL, IPRINT, J, MAXCAL, NZ * .. Local Arrays .. DOUBLE PRECISION BL(N), BU(N), G(N), HESD(N), HESL(LH), W(LW), + X(N) INTEGER ISTATE(N), IW(LIW) * .. External Subroutines .. EXTERNAL E04HCF, E04HDF, E04LBF, FUNCT, HESS, MONIT * .. Executable Statements .. WRITE (NOUT,*) 'E04LBF Example Program Results' * Set up an arbitrary point at which to check the derivatives X(1) = 1.46D0 X(2) = -0.82D0 X(3) = 0.57D0 X(4) = 1.21D0 * Check the 1st derivatives IFAIL = 0 * CALL E04HCF(N,FUNCT,X,F,G,IW,LIW,W,LW,IFAIL) * * Check the 2nd derivatives IFAIL = 0 * CALL E04HDF(N,FUNCT,HESS,X,G,HESL,LH,HESD,IW,LIW,W,LW,IFAIL) * * Continue setting parameters for E04LBF * * Set IPRINT to 1 to obtain output from MONIT at each iteration * IPRINT = -1 MAXCAL = 50*N ETA = 0.9D0 * Set XTOL to zero so that E04LBF will use the default tolerance XTOL = 0.0D0 * We estimate that the minimum will be within 4 units of the * starting point STEPMX = 4.0D0 IBOUND = 0 BL(1) = 1.0D0 BU(1) = 3.0D0 BL(2) = -2.0D0 BU(2) = 0.0D0 * X(3) is not bounded, so we set BL(3) to a large negative * number and BU(3) to a large positive number BL(3) = -1.0D6 BU(3) = 1.0D6 BL(4) = 1.0D0 BU(4) = 3.0D0 * Set up starting point X(1) = 3.0D0 X(2) = -1.0D0 X(3) = 0.0D0 X(4) = 1.0D0 IFAIL = 1 * CALL E04LBF(N,FUNCT,HESS,MONIT,IPRINT,MAXCAL,ETA,XTOL,STEPMX, + IBOUND,BL,BU,X,HESL,LH,HESD,ISTATE,F,G,IW,LIW,W,LW, + IFAIL) * IF (IFAIL.NE.0) THEN WRITE (NOUT,*) WRITE (NOUT,99999) 'Error exit type', IFAIL, + ' - see routine document' END IF IF (IFAIL.NE.1) THEN WRITE (NOUT,*) WRITE (NOUT,99998) 'Function value on exit is ', F WRITE (NOUT,99997) 'at the point', (X(J),J=1,N) WRITE (NOUT,*) + 'The corresponding (machine dependent) gradient is' WRITE (NOUT,99996) (G(J),J=1,N) WRITE (NOUT,99995) 'ISTATE contains', (ISTATE(J),J=1,N) NZ = 0 DO 20 J = 1, N IF (ISTATE(J).GT.0) NZ = NZ + 1 20 CONTINUE WRITE (NOUT,99994) 'and HESD contains', (HESD(J),J=1,NZ) END IF STOP * 99999 FORMAT (1X,A,I3,A) 99998 FORMAT (1X,A,F9.4) 99997 FORMAT (1X,A,4F9.4) 99996 FORMAT (23X,1P,4D12.3) 99995 FORMAT (1X,A,4I5) 99994 FORMAT (1X,A,4D12.4) END * SUBROUTINE FUNCT(IFLAG,N,XC,FC,GC,IW,LIW,W,LW) * Routine to evaluate objective function and its 1st derivatives. * .. Scalar Arguments .. DOUBLE PRECISION FC INTEGER IFLAG, LIW, LW, N * .. Array Arguments .. DOUBLE PRECISION GC(N), W(LW), XC(N) INTEGER IW(LIW) * .. Executable Statements .. FC = (XC(1)+10.0D0*XC(2))**2 + 5.0D0*(XC(3)-XC(4))**2 + (XC(2) + -2.0D0*XC(3))**4 + 10.0D0*(XC(1)-XC(4))**4 GC(1) = 2.0D0*(XC(1)+10.0D0*XC(2)) + 40.0D0*(XC(1)-XC(4))**3 GC(2) = 20.0D0*(XC(1)+10.0D0*XC(2)) + 4.0D0*(XC(2)-2.0D0*XC(3))**3 GC(3) = 10.0D0*(XC(3)-XC(4)) - 8.0D0*(XC(2)-2.0D0*XC(3))**3 GC(4) = 10.0D0*(XC(4)-XC(3)) - 40.0D0*(XC(1)-XC(4))**3 RETURN END * SUBROUTINE HESS(IFLAG,N,XC,FHESL,LH,FHESD,IW,LIW,W,LW) * Routine to evaluate 2nd derivatives * .. Scalar Arguments .. INTEGER IFLAG, LH, LIW, LW, N * .. Array Arguments .. DOUBLE PRECISION FHESD(N), FHESL(LH), W(LW), XC(N) INTEGER IW(LIW) * .. Executable Statements .. FHESD(1) = 2.0D0 + 120.0D0*(XC(1)-XC(4))**2 FHESD(2) = 200.0D0 + 12.0D0*(XC(2)-2.0D0*XC(3))**2 FHESD(3) = 10.0D0 + 48.0D0*(XC(2)-2.0D0*XC(3))**2 FHESD(4) = 10.0D0 + 120.0D0*(XC(1)-XC(4))**2 FHESL(1) = 20.0D0 FHESL(2) = 0.0D0 FHESL(3) = -24.0D0*(XC(2)-2.0D0*XC(3))**2 FHESL(4) = -120.0D0*(XC(1)-XC(4))**2 FHESL(5) = 0.0D0 FHESL(6) = -10.0D0 RETURN END * SUBROUTINE MONIT(N,XC,FC,GC,ISTATE,GPJNRM,COND,POSDEF,NITER,NF,IW, + LIW,W,LW) * Monitoring routine * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION COND, FC, GPJNRM INTEGER LIW, LW, N, NF, NITER LOGICAL POSDEF * .. Array Arguments .. DOUBLE PRECISION GC(N), W(LW), XC(N) INTEGER ISTATE(N), IW(LIW) * .. Local Scalars .. INTEGER ISJ, J * .. Executable Statements .. WRITE (NOUT,*) WRITE (NOUT,*) +' Itn Fn evals Fn value Norm of proj g +radient' WRITE (NOUT,99999) NITER, NF, FC, GPJNRM WRITE (NOUT,*) WRITE (NOUT,*) + ' J X(J) G(J) Status' DO 20 J = 1, N ISJ = ISTATE(J) IF (ISJ.GT.0) THEN WRITE (NOUT,99998) J, XC(J), GC(J), ' Free' ELSE IF (ISJ.EQ.-1) THEN WRITE (NOUT,99998) J, XC(J), GC(J), ' Upper Bound' ELSE IF (ISJ.EQ.-2) THEN WRITE (NOUT,99998) J, XC(J), GC(J), ' Lower Bound' ELSE IF (ISJ.EQ.-3) THEN WRITE (NOUT,99998) J, XC(J), GC(J), ' Constant' END IF 20 CONTINUE IF (COND.NE.0.0D0) THEN IF (COND.GT.1.0D6) THEN WRITE (NOUT,*) WRITE (NOUT,*) +'Estimated condition number of projected Hessian is more than 1.0E ++6' ELSE WRITE (NOUT,*) WRITE (NOUT,99997) + 'Estimated condition number of projected Hessian = ', COND END IF IF ( .NOT. POSDEF) THEN * The following statement is included so that this MONIT * can also be used in conjunction with E04KDF WRITE (NOUT,*) WRITE (NOUT,*) + 'Projected Hessian matrix is not positive definite' END IF RETURN END IF * 99999 FORMAT (1X,I3,6X,I5,2(6X,1P,D20.4)) 99998 FORMAT (1X,I2,1X,1P,2D20.4,A) 99997 FORMAT (1X,A,1P,D10.2) END