* D01FDF Example Program Text * Mark 14 Revised. NAG Copyright 1989. * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Local Scalars .. DOUBLE PRECISION R0, RESULT, SIGMA, U INTEGER IFAIL, LIMIT, NCALLS, NDIM * .. External Functions .. DOUBLE PRECISION FUNCTN EXTERNAL FUNCTN * .. External Subroutines .. EXTERNAL D01FDF, D01FDV, REGION * .. Executable Statements .. WRITE (NOUT,*) 'D01FDF Example Program Results' NDIM = 3 LIMIT = 8000 U = 1.5D0 WRITE (NOUT,*) WRITE (NOUT,*) 'Sphere-to-sphere transformation' SIGMA = 1.5D0 R0 = 0.9D0 IFAIL = 0 * CALL D01FDF(NDIM,FUNCTN,SIGMA,D01FDV,LIMIT,R0,U,RESULT,NCALLS, + IFAIL) * WRITE (NOUT,*) WRITE (NOUT,99999) 'Estimated value of the integral =', RESULT WRITE (NOUT,99998) 'Number of integrand evaluations =', NCALLS WRITE (NOUT,*) WRITE (NOUT,*) 'Product region transformation' SIGMA = -1.0D0 R0 = 0.8D0 IFAIL = 0 * CALL D01FDF(NDIM,FUNCTN,SIGMA,REGION,LIMIT,R0,U,RESULT,NCALLS, + IFAIL) * WRITE (NOUT,*) WRITE (NOUT,99999) 'Estimated value of the integral =', RESULT WRITE (NOUT,99998) 'Number of integrand evaluations =', NCALLS STOP * 99999 FORMAT (1X,A,F9.3) 99998 FORMAT (1X,A,I4) END * DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) * .. Scalar Arguments .. INTEGER NDIM * .. Array Arguments .. DOUBLE PRECISION X(NDIM) * .. Local Scalars .. INTEGER I * .. Intrinsic Functions .. INTRINSIC ABS, SQRT * .. Executable Statements .. FUNCTN = 2.25D0 DO 20 I = 1, NDIM FUNCTN = FUNCTN - X(I)*X(I) 20 CONTINUE FUNCTN = 1.0D0/SQRT(ABS(FUNCTN)) RETURN END * SUBROUTINE REGION(NDIM,X,J,C,D) * .. Scalar Arguments .. DOUBLE PRECISION C, D INTEGER J, NDIM * .. Array Arguments .. DOUBLE PRECISION X(NDIM) * .. Local Scalars .. DOUBLE PRECISION SUM INTEGER I, J1 * .. Intrinsic Functions .. INTRINSIC ABS, SQRT * .. Executable Statements .. C = -1.5D0 D = 1.5D0 IF (J.GT.1) THEN SUM = 2.25D0 J1 = J - 1 DO 20 I = 1, J1 SUM = SUM - X(I)*X(I) 20 CONTINUE D = SQRT(ABS(SUM)) C = -D END IF RETURN END